
Release Notes and Installation Guide
Version 8.1

1

Copyright and Trademarks
Release Notes and Installation Guide

Version 8.1

February 2025

Copyright © 2025 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

http://www.lispworks.com

Contents

1 Introduction 8

1.1 LispWorks Editions 8

1.2 LispWorks for Mobile Runtime 9

1.3 Evaluation quick guide 9

1.4 Further details 10

1.5 About this Guide 10

2 Installation on macOS 12

2.1 Choosing the Graphical User Interface 12

2.2 Documentation 12

2.3 Software and hardware requirements 12

2.4 Installing LispWorks for Macintosh 13

2.5 Starting LispWorks for Macintosh 16

2.6 Uninstalling LispWorks for Macintosh 17

2.7 Upgrading the LispWorks Edition 17

3 Installation on Windows 18

3.1 Documentation 18

3.2 Installing LispWorks for Windows 18

3.3 Uninstalling LispWorks for Windows 20

3.4 Upgrading the LispWorks Edition 20

3.5 Upgrading to 64-bit LispWorks 20

4 Installation on Linux 21

4.1 Software and hardware requirements 21

4.2 License agreement 22

4.3 Software delivery and installer formats 22

4.4 Installing LispWorks for Linux 23

4.5 LispWorks looks for a license key 26

4.6 Running LispWorks 27

4.7 Configuring the image 28

4.8 Printable LispWorks documentation 28

4.9 Uninstalling LispWorks for Linux 28

4.10 Upgrading the LispWorks Edition 28

4.11 Upgrading to 64-bit LispWorks 28

4

5 Installation on x86/x64 Solaris 29

5.1 Software and hardware requirements 29

5.2 Software delivery and installer format 30

5.3 Installing LispWorks for x86/x64 Solaris 30

5.4 LispWorks looks for a license key 32

5.5 Running LispWorks 32

5.6 Configuring the image 32

5.7 Printable LispWorks documentation 33

5.8 Uninstalling LispWorks for x86/x64 Solaris 33

5.9 Upgrading the LispWorks Edition 33

5.10 Upgrading to 64-bit LispWorks 33

6 Installation on FreeBSD 34

6.1 Software and hardware requirements 34

6.2 License agreement 35

6.3 Software delivery and installer format 35

6.4 Installing LispWorks for FreeBSD 36

6.5 LispWorks looks for a license key 37

6.6 Running LispWorks 37

6.7 Configuring the image 38

6.8 Printable LispWorks documentation 38

6.9 Uninstalling LispWorks for FreeBSD 38

6.10 Upgrading the LispWorks Edition 38

6.11 Upgrading to 64-bit LispWorks 39

7 Installation of LispWorks for Mobile Runtime 40

7.1 Installing LispWorks for Android Runtime 40

7.2 Installing LispWorks for iOS Runtime 40

8 Configuration on macOS 41

8.1 Introduction 41

8.2 License keys 41

8.3 Configuring your LispWorks installation 41

8.4 Saving and testing the configured image 43

8.5 Initializing LispWorks 45

8.6 Loading CLIM 2.0 45

8.7 The Common SQL interface 46

8.8 Common Prolog and KnowledgeWorks 47

9 Configuration on Windows 48

9.1 Introduction 48

9.2 License keys 48

9.3 Configuring your LispWorks installation 48

Contents

5

9.4 Saving and testing the configured image 49

9.5 Initializing LispWorks 51

9.6 Loading CLIM 2.0 51

9.7 The Common SQL interface 52

9.8 Common Prolog and KnowledgeWorks 52

9.9 Runtime library requirement on Windows 53

10 Configuration on Linux, x86/x64 Solaris & FreeBSD 54

10.1 Introduction 54

10.2 License keys 54

10.3 Configuring your LispWorks installation 55

10.4 Saving and testing the configured image 56

10.5 Initializing LispWorks 57

10.6 Loading CLIM 2.0 57

10.7 The Common SQL interface 58

10.8 Common Prolog and KnowledgeWorks 59

10.9 Documentation on x86/x64 Solaris and FreeBSD 59

11 Troubleshooting, Patches and Reporting Bugs 60

11.1 Troubleshooting 60

11.2 Troubleshooting on Windows 62

11.3 Troubleshooting on macOS 62

11.4 Troubleshooting on Linux 62

11.5 Troubleshooting on x86/x64 Solaris 63

11.6 Troubleshooting on FreeBSD 64

11.7 Troubleshooting on X11/Motif 64

11.8 Updating with patches 65

11.9 Reporting bugs 67

11.10 Transferring LispWorks to a different machine 70

12 Release Notes 72

12.1 Keeping your old LispWorks installation 72

12.2 Updating your code for LispWorks 8.1 72

12.3 Platform support 72

12.4 GTK+ window system 73

12.5 New CAPI features 73

12.6 New graphics ports features 77

12.7 New color system features 77

12.8 More new features 78

12.9 IDE changes 82

12.10 Editor changes 83

12.11 Foreign Language interface changes 84

12.12 Objective-C changes 84

12.13 Common SQL changes 85

Contents

6

12.14 CLOS/MOP changes 85

12.15 Other changes 85

12.16 Documentation changes 86

12.17 Known Problems 87

12.18 Binary Incompatibility 88

Index

Contents

7

1 Introduction

1.1 LispWorks Editions

LispWorks is available in several product editions on desktop platforms.

The main differences between the editions are outlined below. Further information can be found at:

www.lispworks.com/products

1.1.1 Personal Edition

LispWorks Personal Edition allows you to explore a fully-enabled Common Lisp programming environment and to develop
small- to medium-scale programs for personal and academic use. It includes:

• Native graphical IDE.

• Full Common Lisp compiler.

• COM/Automation API on Microsoft Windows.

LispWorks Personal Edition has several limitations. These are:

• A heap size limit

• A time limit of 5 hours for each session.

• The functions save-image, deliver, and load-all-patches are not available.

• Initialization files are not available.

• HobbyistDV, Professional and Enterprise Edition module loading is not included.

LispWorks Personal Edition has no license fee. Download it from:

www.lispworks.com/downloads

1.1.2 Hobbyist Edition

LispWorks 8.1 Hobbyist Edition is available to individual licensees for non-commercial and non-academic use. It is a fully-
functional Common Lisp IDE without most of the limitations of the Personal Edition:

• No heap size limit.

• No session time limit.

• The functions save-image and load-all-patches are available.

• Initialization files are available.

HobbyistDV, Professional and Enterprise Edition module loading is not included. In particular, the function deliver is
omitted so runtimes cannot be generated.

8

http://www.lispworks.com/products
http://www.lispworks.com/downloads

1.1.3 HobbyistDV Edition

LispWorks 8.1 HobbyistDV Edition is available to individual licensees for non-commercial and non-academic use. It has all
the features of the Hobbyist Edition plus:

• The function deliver allowing generation of non-commercial end-user applications and libraries.

1.1.4 Professional Edition

LispWorks 8.1 Professional Edition includes all the features of the HobbyistDV Edition plus:

• Fully supported commercial product.

• Delivery of commercial end-user applications and libraries.

• CLIM 2.0 on X11/Motif and Windows.

• 30-day free "Getting Started" technical support.

1.1.5 Enterprise Edition

LispWorks 8.1 Enterprise Edition provides further support for the software needs of the modern enterprise. It has all the
features of the Professional Edition plus:

• Database access through the Common SQL interface.

• Portable distributed computing through CORBA.

• Expert systems programming through KnowledgeWorks and embedded Prolog compiler.

On most platforms you can choose either the 32-bit or 64-bit implementation of LispWorks. These implementations are
licensed separately.

1.2 LispWorks for Mobile Runtime

LispWorks for Android Runtime and LispWorks for iOS Runtime are new products which you can use to build LispWorks
runtimes for inclusion in mobile apps.

1.3 Evaluation quick guide

If you are evaluating LispWorks, then the following notes might prove to be useful.

• LispWorks support (lisp-support@lispworks.com) will be happy to answer any issues you have.

• The LispWorks distribution contains various examples demonstrating various features of LispWorks. All the examples
are in the directory "examples" inside the LispWorks installation.

You can find this directory by evaluating the following in a LispWorks Listener:

(example-file "")

Each example contains comments that explain what it demonstrates.

In many cases it is convenient to copy the example and modify it to do what you want, rather than writing your own code
from scratch.

1 Introduction

9

• If you encounter an error that is not obviously a bug in your code, it is always best to produce a full bug report as
described in 11.9.3 Generate a bug report template. This will speed up the resolution of the issue.

• If you have performance issues, you should use room, extended-time and profile to narrow the problem. See the
LispWorks® User Guide and Reference Manual for details of these diagnostic functions and macros. You should also
report it to LispWorks support, as LispWorks is efficient in general and we do not expect performance problems.

1.4 Further details

For further information about LispWorks products visit:

www.lispworks.com

To purchase LispWorks please follow the instructions at:

www.lispworks.com/buy

1.5 About this Guide

This document is an installation guide and release notes for LispWorks 8.1 on macOS, Windows, Linux, x86/x64 Solaris,
FreeBSD platforms and LispWorks for Mobile Runtime. It also explains how to configure LispWorks to best suit your local
conditions and needs.

This guide provides instructions for installing and loading the modules included with each Edition or add-on product.

Unless explicitly mentioned, instructions in this manual refer to the Hobbyist, HobbyistDV, Professional and Enterprise
Editions, rather than the Personal Edition or LispWorks for Mobile Runtime which are distributed separately.

1.5.1 Installation and Configuration

Chapters 2 Installation on macOS -6 Installation on FreeBSD explain in brief and sufficient terms how to complete a
LispWorks installation on macOS, Windows, Linux, x86/x64 Solaris or FreeBSD. Choose the chapter for your platform: 2
Installation on macOS, 3 Installation on Windows, 4 Installation on Linux, 5 Installation on x86/x64 Solaris, or 6
Installation on FreeBSD.

Chapter 7 Installation of LispWorks for Mobile Runtime briefly mentions installation of LispWorks for Mobile Runtime.

Chapters 8 Configuration on macOS-10 Configuration on Linux, x86/x64 Solaris & FreeBSD explain in detail everything
necessary to configure, run, and test LispWorks 8.1. Choose the chapter for your platform: 8 Configuration on macOS. 9
Configuration on Windows, or 10 Configuration on Linux, x86/x64 Solaris & FreeBSD. This also includes sections on
initializing LispWorks and loading some of the modules. You should have no difficulty configuring, running, and testing
LispWorks using these instructions if you have a basic familiarity with your operating system and Common Lisp.

1.5.2 Troubleshooting

Chapter 11 Troubleshooting, Patches and Reporting Bugs discusses other issues that may arise when installing and
configuring LispWorks. It includes a section that provides answers to problems you may have encountered, sections on the
LispWorks patching system (used to allow bug fixes and private patch changes between releases of LispWorks), and details of
how to report any bugs you encounter.

1 Introduction

10

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm
http://www.lispworks.com
http://www.lispworks.com/buy

1.5.3 Release Notes

Chapter 12 Release Notes highlights what is new in this release and special issues for your consideration.

1 Introduction

11

2 Installation on macOS

This chapter is an installation guide for LispWorks 8.1 (64-bit) for Macintosh. 8 Configuration on macOS discusses post-
installation and configuration in detail, but this chapter presents the instructions necessary to get LispWorks up and running
on your system.

2.1 Choosing the Graphical User Interface

LispWorks for Macintosh supports three different graphical interfaces. Most users choose the native macOS GUI, but you
can use the X11 GUI option instead, which supports both GTK+ and Motif. (Motif is deprecated, though.)

Different executables and supporting files are supplied for the two GUI options. You need to decide at installation time which
of these you will use, or you can install support for both. If you install just one GUI option and later decide to install the
other, you can simply run the installer again.

LispWorks for Macintosh Personal Edition supports only the native macOS GUI.

2.2 Documentation

The LispWorks documentation set is included in two electronic formats: HTML and PDF. You can chose whether to install it
as described in 2.4 Installing LispWorks for Macintosh.

The HTML format can be used from within the LispWorks IDE via the Help menu. You will need to have a suitable web
browser installed. You can also reach the HTML documentation via the alias
LispWorks 8.1/HTML Documentation.htm. If you choose not to install the documentation, you will not be able to
access the HTML Documentation from the LispWorks Help menu.

The PDF format is suitable for printing. Each manual in the documentation set is presented in a separate PDF file in the
LispWorks library under manual/offline/pdf. The simplest way to locate these PDF files is the alias
LispWorks 8.1/PDF Documentation. To view and print these files, you will need a PDF viewer such as Preview
(standard on macOS) or Adobe® Reader® (which can be downloaded from the Adobe website at www.adobe.com).

2.3 Software and hardware requirements

LispWorks 8.1 supports Macintosh computers containing Intel CPUs.

An overview of system requirements is provided in the table System requirements on macOS. The sections that follow
discuss any relevant details.

System requirements on macOS

12

http://www.adobe.com

Product Hardware Requirements Software Requirements

LispWorks (64-bit)
for Macintosh

Intel or Apple silicon processor.
356 MB of disk space including
documentation

macOS version 10.6.x or higher for
Intel and 11.5.x or higher for Apple
silicon.
GTK+ 3 (version 3.24 or higher) or
GTK+ 2 (version 2.4 or higher) to run
the GTK+ GUI.
Open Motif 2.3 and Imlib2 1.4.9 if
you want to run the deprecated Motif
GUI.

2.4 Installing LispWorks for Macintosh

2.4.1 Main installation and patches

The LispWorks 8.1 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.1.x. You need to complete the main installation before adding patches.

2.4.2 Information for Beta testers

Users of LispWorks 8.1 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.1.

See 2.6 Uninstalling LispWorks for Macintosh for instructions.

2.4.3 Information for users of previous versions

You can install LispWorks 8.1 in the same location as LispWorks 8.0 or previous versions. If you always choose the default
install location, a new folder named LispWorks 8.1 (64-bit) will be created alongside the other versions.

2.4.4 Launch the LispWorks installer

The LispWorks installer is a pkg file, with the following name:

LispWorks81-64bit_Installer.pkg (64-bit Lispworks)

LispWorksPersonal81_Installer.pkg (LispWorks Personal Edition)

To install LispWorks, launch this file, which should run the macOS Installer application. If this does not happen, right-click
on th file and choose Open With > Installer.

The Introduction page should be displayed. Click Continue to go to the next step.

2.4.5 The Read Me

The Read Me presented next by the installer is a plain text version of this Release Notes and Installation Guide.

2 Installation on macOS

13

2.4.6 The License Agreement

Check the license agreement, then click Continue. You will be asked if you agree to the license terms. Click the Agree
button only if you accept the terms of the license. If you click Disagree, then the installer will not proceed.

2.4.7 Install Location

All the files installed with LispWorks are placed in the LispWorks folder, which is named LispWorks 8.1 (64-bit), or
LispWorks Personal 8.1 depending on which edition you are installing. The LispWorks folder is placed in the main
Applications folder for use by all users.

Note: The Applications folder may display in the Finder with a name localized for your language version of macOS.

2.4.8 Choose your installation type

The default Standard Install includes the native macOS GUI and the documentation, but you can also customize the install,
for examle to select the X11 GUI option.

Different executables and supporting files are supplied for the two GUI options. If you install just one of these and later
decide to install the other, you can simply run the installer again.

2.4.8.1 The native macOS GUI

If you simply want to install LispWorks for the native macOS GUI, and the documentation, click Install.

2.4.8.2 The X11 GTK+ and Motif GUIs

If you want to use LispWorks with either of the alternative X11 GUIs, click Customize and select the option LispWorks with
X11 IDE under Extra items.

The default X11 GUI is GTK+. Motif is also available, but is deprecated. You can select Motif at run time.

Note: to run LispWorks with an X11 GUI, you will need both of these installed:

• An X server such as Apple's X11.app, available at www.apple.com.

• One of GTK+ 2 (version 2.4 or higher) or Open Motif 2.3.

If you use Open Motif, you will also need Imlib2 version 1.4.9 or later.

None of these are required at the time you install LispWorks, however.

The X11 GUIs are not available for the Personal Edition.

2.4.8.3 The Documentation

If you use the Standard Install the documentation will be installed.

If you do not wish to install the documentation, click Customize and uncheck the LispWorks documentation option under
Standard items.

2 Installation on macOS

14

http://www.apple.com

2.4.9 Installing and entering license data

Now click Install.

You will be prompted for an administrator's name and password.

If you are not installing the LispWorks Personal Edition, then enter your serial number and license key when the installer asks
for these details.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, showing the complete
output after you enter it, preferably with a screenshot.

2.4.10 LispWorks is added to the Dock

The installer adds LispWorks to the Dock.

2.4.11 Finishing up

You should now see a message confirming that installation of LispWorks was successful. Click the Close button.

Note: LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you must move it, move the entire LispWorks installation folder. If you simply want to run LispWorks
from somewhere more convenient, then consider adding an alias.

2.4.12 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches which are available for download at
www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

2.4.13 Obtaining X11 GTK+

LispWorks does not provide GTK+ libraries, so you need to install third-party libraries, such as:

• the gtk+2 package from the Fink Project at www.finkproject.org, or:

• the gtk2 package from MacPorts at www.macports.org.

Note: you need the x11 gtk2 libraries, not GTK-OSX (Quartz).

2.4.14 Obtaining Open Motif and Imlib2

LispWorks 8.1 for Macintosh on X11/Motif requires Open Motif 2.3 and Imlib2 1.4.9 or later.

To obtain these, you can install the openmotif and imlib2 packages from MacPorts at www.macports.org.

Assuming you installed them in the default location (/opt/local/lib), you need to evaluate the following to allow
LispWorks to find them:

(setf (environment-variable "DYLD_LIBRARY_PATH") "/opt/local/lib")

Note: The Motif GUI is deprecated. A GTK+ GUI is available.

2 Installation on macOS

15

http://www.lispworks.com/downloads/patch-selection.html#lwm
http://www.finkproject.org
http://www.macports.org
http://www.macports.org

2.5 Starting LispWorks for Macintosh

2.5.1 Start the native macOS LispWorks GUI

Assuming you have installed this option, you can now start LispWorks with the native macOS GUI by double-clicking on the
LispWorks icon in the LispWorks folder.

Note: The LispWorks folder is described in 2.4.7 Install Location.

If you added LispWorks to the Dock during installation, you can also start LispWorks from the Dock. If you did not add
LispWorks to the Dock during installation, you can add it simply by dragging the LispWorks icon from the Finder to the
Dock.

If you want to create a LispWorks image that does not start the GUI automatically, then see 8.4.5 Saving a non-windowing
image (this option is not available in the Personal Edition).

See 8.3 Configuring your LispWorks installation for more information about configuring your LispWorks image for your
own needs.

Note: for the Personal Edition, the folder name and icon name are LispWorks Personal.

2.5.2 Start the GTK+ LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that you have X11 running and GTK+ installed, you
can now start LispWorks with the GTK+ GUI.

Follow this session in the X11 terminal for 64-bit LispWorks (the filenames will be slightly different for 64-bit LispWorks):

bash-3.2$ cd "/Applications/LispWorks 8.0 (64-bit)"
bash-3.2$./lispworks-8-1-0-macos64-universal-gtk
; Loading text file /Applications/LispWorks 7.1 (64-bit)/Library/lib/8-0-0-0/private-patches/load.l
isp
LispWorks(R): The Common Lisp Programming Environment
Copyright (C) 1987-2021 LispWorks Ltd. All rights reserved.
Version 8.0.0
Saved by LispWorks as lispworks-8-1-0-amd64-darwin-gtk, at 02 Aug 2021 15:21
User lw on machine.lispworks.com
; Loading text file /Applications/LispWorks 8.0 (64-bit)/Library/lib/8-0-0-0/config/siteinit.lisp
; Loading text file /Applications/LispWorks 8.0 (64-bit)/Library/lib/8-0-0-0/private-patches/load.
lisp
; Loading text file /Users/lw/.lispworks

The LispWorks GTK+ IDE should appear.

See 8.3 Configuring your LispWorks installation for more information about configuring your LispWorks image for your
own needs.

2.5.3 Start the Motif LispWorks GUI

Assuming you have installed the "LispWorks with X11 IDE" option, and that you have X11 running and Motif and Imlib2
installed (see 2.4.14 Obtaining Open Motif and Imlib2), you can use LispWorks with the Motif GUI.

You first must load the Motif GUI into the supplied lispworks-8-1-0-macos64-universal-gtk image, by:

(require "capi-motif")

This loads the necessary module and makes Motif the default library for CAPI.

2 Installation on macOS

16

Then you can start the LispWorks IDE by calling the function env:start-environment. You might want to save an image
with the "capi-motif" module pre-loaded: do this with a save-image script containing:

(require "capi-motif")

2.6 Uninstalling LispWorks for Macintosh

To uninstall LispWorks you should run the file uninstall.command in the LispWorks folder. This must be run as an
administrator user.

2.7 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

2 Installation on macOS

17

mailto:lisp-sales@lispworks.com

3 Installation on Windows

This chapter is an installation guide for LispWorks 8.1 (32-bit) for Windows and LispWorks 8.1 (64-bit) for Windows. 9
Configuration on Windows discusses post-installation and configuration in detail, but this chapter presents the instructions
necessary to get LispWorks up and running on your system.

3.1 Documentation

The LispWorks documentation set is available in two electronic forms: HTML and PDF. You can choose whether to install
either of these.

If you install the HTML documentation, then it can be used from within the the LispWorks IDE via the Help menu. It is also
available from the Windows 7 Start menu under Start > All Programs > LispWorks 8.1 > HTML Documentation or on the
Windows 8 start screen.

The PDF format is suitable for printing. Each manual in the documentation set is presented in a separate PDF file, available
from the Start menu under Start > All Programs > LispWorks 8.1 > PDF Documentation. To view and print these files, you
will need a PDF viewer such as Adobe® Reader®. If you do not already have this, it can be downloaded from the Adobe
website.

3.2 Installing LispWorks for Windows

3.2.1 Main installation and patches

The LispWorks 8.1 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.1.x. You need to complete the main installation before adding patches.

3.2.2 Visual Studio runtime components and Windows Installer

On systems where this is not present, installing LispWorks will automatically install a copy of the Microsoft.VC80.CRT
component, which contains the Microsoft Visual Studio runtime DLLs needed by LispWorks.

3.2.3 Installing over previous versions

You can install LispWorks 8.1 in the same location as LispWorks 8.0 or previous versions back to LispWorks 4.4.5. This is
the default installation location.

You can also install LispWorks 8.1 without uninstalling older versions such as Xanalys LispWorks 4.4 or Xanalys LispWorks
4.3 provided that the chosen installation directory is different.

3.2.4 Information for Beta testers

Users of LispWorks 8.1 Beta should completely uninstall it before installing LispWorks 8.1. Remember to remove any
patches added since the Beta release.

See 3.3 Uninstalling LispWorks for Windows for instructions.

18

3.2.5 To install LispWorks

To install LispWorks (32-bit) for Windows run LispWorks81-32bit.exe. You will have downloaded this from the
x86-win32 folder.

To install LispWorks (64-bit) for Windows run LispWorks81-64bit.exe. You will have downloaded this from the
x64-windows folder.

Follow the instructions on screen and read the remainder of this section.

3.2.5.1 Entering the License Data

Enter your serial number and license key when the installer asks for these details in the Customer Information screen.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, describing what happens
after you enter it, preferably with a screenshot.

Note: the LispWorks Personal Edition installer does not ask you to enter license data.

3.2.5.2 Installation location

By default 32-bit LispWorks installs in All Users space in C:\Program Files (x86)\LispWorks\.

By default 64-bit LispWorks installs in All Users space in C:\Program Files\LispWorks\.

To install LispWorks in a non-default location (for example, to ensure it is accessible only by the licensed user on a multi-
user system such as a login server or remote desktop), select Custom setup in the Setup Type screen. Then click Change... in
the Custom Setup screen and choose the desired location in the Change Current Destination Folder dialog. Do not simply
move the LispWorks folder later, as this will break the installation.

3.2.5.3 Installing the Documentation

By default all the documentation is installed.

If you do not want to install the HTML Documentation, select Custom setup in the Setup Type screen and select This feature
will not be available in the HTML Documentation feature in the Custom Setup screen.

You can also choose not to install the PDF Documentation, in a similar way.

You can add the HTML Documentation and the PDF Documentation later, by re-running the installer. The documentation is
also available at www.lispworks.com/documentation.

3.2.5.4 Installing Patches

After completing the main installation of the Professional or Enterprise Edition, ensure you install the latest patches which
are available for download at www.lispworks.com/downloads/patch-selection.html.

Patch installation instructions are in the README file accompanying the patch download.

3 Installation on Windows

19

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads/patch-selection.html#lww

3.2.5.5 Starting LispWorks

After installation LispWorks can be invoked from the Start menu or Start screen (on Windows 8).

Note: After installation you must not move or copy the LispWorks folder, since the system records the installation location.
Moreover LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be
moved around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a
shortcut.

3.3 Uninstalling LispWorks for Windows

To uninstall LispWorks:

1. Select Programs and Features in the Control Panel or App & features in Settings on Windows 10.

2. Select LispWorks 8.1 (32-bit) or LispWorks 8.1 (64-bit) and click Uninstall.

This will uninstall LispWorks along with any installed updates. It will not remove any private patches.

3.4 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

3.5 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispworks.com

3 Installation on Windows

20

mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

4 Installation on Linux

This chapter is an installation guide for LispWorks 8.1 (32-bit) for x86/x86_64 Linux, LispWorks 8.1 (64-bit) for x86_64
Linux, LispWorks 8.1 (32-bit) for ARM Linux and LispWorks 8.1 (64-bit) for ARM64 Linux. 10 Configuration on Linux,
x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but this chapter presents the instructions
necessary to get LispWorks up and running on your system.

4.1 Software and hardware requirements

An overview of system requirements is provided in System requirements on Linux. The sections that follow discuss any
relevant details.

System requirements on Linux

Hardware Requirements Software Requirements

179 MB of disk space for Enterprise Edition (32-bit)
plus documentation

Any distribution with glibc 2.6 or later for x86/x86_64
and 2.17 or later for ARM/ARM64

194 MB of disk space for Enterprise Edition (64-bit)
plus documentation

GTK+ 3 (version 3.24 or higher) or GTK+ 2 (version 2.4
or higher) to run the GTK+ GUI.
Open Motif 2.2.x or 2.3.x and Imlib2 1.4.3 or later to run
the deprecated Motif GUI

Any modern machine is likely to have sufficient RAM to
run LispWorks as distributed.

Firefox or Opera web browser for viewing on-line
documentation

4.1.1 GUI libraries

LispWorks 8.1 for Linux requires that the X11 release 6 (or higher) is installed. It also requires that either GTK+ or Open
Motif with Imlib2 are installed.

The remainder of this section contains the details for each of these distinct GUI options.

4.1.1.1 GTK+

In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

4.1.1.2 Motif

Open Motif version 2.2 or 2.3 is required to run LispWorks with the Motif GUI.

Download and install Open Motif 2.2.x or 2.3.x from your Linux distribution or from www.motifzone.net. Your systems
administrator may be able to help if you do not know how to do this.

You will also need Imlib2 version 1.4.3 or later. Install this from your Linux distribution.

21

http://www.motifzone.net/

Note: You should be able to run the LispWorks 8.1 Motif GUI and LispWorks 7.x, LispWorks 6.x or LispWorks 5.x
simultaneously with Open Motif installed.

4.1.2 Disk requirements

To install without documentation and optional modules, 32-bit LispWorks requires about 57 MB and 64-bit LispWorks
requires about 72 MB. Installing the documentation adds about 108 MB and the optional modules about 14 MB. A full
installation of the 64-bit Enterprise Edition with all documentation and optional modules requires about 194 MB.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispworks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

4.2 License agreement

Before installing, you must read and agree to the license terms.

To do this download the license script from the link we sent to you.

Now run:

sh lwl-license.sh

or, if you are installing the Personal Edition:

sh lwlper-license.sh

Note: You must run this script as the same user that later performs the installation. In particular, if you are going to install
LispWorks from the RPM file, you must run the license script while logged on as root.

Enter "yes" if you agree to the license terms.

4.3 Software delivery and installer formats

LispWorks 8.1 for Linux is supplied as a download. Two formats are provided:

• Red Hat Package Management (RPM) files for x86 and x86_64. RPM is a utility like tar, except it can actually install
products after unpacking them. See 4.4.4 Installation from the binary RPM file (x86 and x86_64 only) for more
information.

• tar files.

4.3.1 Contents of the LispWorks distribution

The supplied installers contain all of the relevant modules.

For RPM installations, the RPM package name is lispworks (or lispworks-personal for the Personal Edition).

The Professional and Enterprise Edition modules are in separately installable RPM packages. These are: CLIM 2.0,
KnowledgeWorks, LispWorks ORB, and Common SQL. 1.1 LispWorks Editions provides Edition details.

For the Professional Edition the separately installable packages are:

lispworks-clim

4 Installation on Linux

22

http://www.lispworks.com/documentation

and for the Enterprise Edition the separately installable packages are:

lispworks-clim
lispworks-kw
lispworks-corba
lispworks-sql

The installation instructions provide the names of the individual distribution files.

4.4 Installing LispWorks for Linux

4.4.1 Main installation and patches

The LispWorks 8.1 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.1.x. You need to complete the main installation before adding patches.

4.4.2 Installing over previous versions

You can install LispWorks 8.1 in the same location as LispWorks 8.0 or previous versions.

4.4.3 Information for Beta testers

Users of LispWorks 8.1 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.1.

See 4.9 Uninstalling LispWorks for Linux for instructions.

4.4.4 Installation from the binary RPM file (x86 and x86_64 only)

For installation on ARM and ARM64, see 4.4.5 Installation from the tar files.

We recommend that you use RPM 4.3 or later (however see below for problems with --prefix argument with some
versions of RPM). The distribution files are also provided in tar format in case you do not have a suitable version of RPM or
are using another distribution of Linux.

If you already have LispWorks 8.1 Beta installed, please uninstall it before installing this product. See 4.9 Uninstalling
LispWorks for Linux.

Some versions of RPM may cause problems (eg. RPM 3.0). If you get the following message when using the --prefix
argument:

rpm: only one of --prefix or --relocate may be used

try upgrading to RPM 3.0.2 or greater.

Installation of LispWorks for Linux from the RPM file must be done while you are logged on as root.

4.4.4.1 Installation directories

By default 32-bit LispWorks is installed in /usr/lib/LispWorks and a symbolic link to the executable is placed in
/usr/bin/lispworks-8-1-0-x86-linux. Similarly, 64-bit LispWorks is installed in /usr/lib64/LispWorks and a
symbolic link to the executable is placed in /usr/bin/lispworks-8-1-0-amd64-linux. However, the RPM is
relocatable, and the --prefix option can be used to allow the installation of LispWorks in a non-default directory. The

4 Installation on Linux

23

default prefix is /usr.

Note: RPM version 4.2 has a bug which can hinder secondary installations (CLIM, Common SQL, LispWorks ORB or
KnowledgeWorks) in a user-specified directory. See 11.4.2 RPM_INSTALL_PREFIX not set for a workaround.

Note: the Personal Edition installs by default in /usr/lib/LispWorksPersonal. Do not attempt to to install different
editions in the same location, since some filenames coincide and uninstallation may break.

4.4.4.2 Selecting the correct RPM files

The main RPM file in the LispWorks distribution is named using the following pattern:

lispworks-8.1-n.arch.rpm

The integer n denotes a build number and will be same in all files in your distribution. The string arch will be either i386 for
32-bit LispWorks or x86_64 for 64-bit LispWorks. The text below assumes 32-bit LispWorks.

Note: For the Personal Edition, use lispworks-personal-8.1-*.i386.rpm wherever lispworks-8.1-*.i386.rpm
is mentioned in this document. See 1.1.1 Personal Edition for more information specific to the Personal Edition.

4.4.4.3 Installing or upgrading LispWorks for Linux

To install or upgrade LispWorks from the RPM file, perform the following steps as root:

1. Follow the instructions under 4.2 License agreement.

2. Locate the RPM installation file lispworks-8.1-n.i386.rpm.

3. Install or upgrade LispWorks in the standard RPM way, for example:

rpm --install lispworks-8.1-n.i386.rpm

This command installs LispWorks in /usr/lib/LispWorks. A command line of the form:

rpm --install --prefix <directory> lispworks-8.1-n.i386.rpm

installs LispWorks in <directory>.

The directory name must be an absolute pathname. Relative pathnames and pathnames including shell-expanded characters
such as . and ~ do not work.

Note: LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symbolic
link.

See 4.6 Running LispWorks for instructions on entering your license details.

4.4.4.4 Installing CLIM 2.0

The following module is packaged as a separate RPM file for installation after the main lispworks package. It is available
in LispWorks Professional and Enterprise Editions only.

4 Installation on Linux

24

File distributions for layered products in Professional and Enterprise Editions

File Distribution Layered Product

lispworks-clim-8.1-n.i386.rpm CLIM 2.0

Install this module if required by substituting the above filename into the same commands you used to install the main
lispworks package.

If you used a --prefix argument when installing LispWorks, then use the same prefix for this module.

4.4.4.5 Installing loadable Enterprise Edition modules

The following modules are packaged as separate RPM files for installation after the main lispworks package.

File distributions for layered products in the Enterprise Edition

File Distribution Layered Product

lispworks-clim-8.1-n.i386.rpm CLIM 2.0

lispworks-kw-8.1-n.i386.rpm KnowledgeWorks

lispworks-corba-8.1-n.i386.rpm LispWorks ORB

lispworks-sql-8.1-n.i386.rpm Common SQL

Install these modules as described in 4.4.4.4 Installing CLIM 2.0.

4.4.4.6 Documentation and saving space

Documentation in HTML and PDF format is provided with all editions. PostScript format is available to download. To obtain
copies of the printable manuals, see 4.8 Printable LispWorks documentation.

Documentation is installed by default in the lib/8-1-0-0/manual sub-directory of the LispWorks installation directory.

Using RPM, you can save space by choosing not to install the documentation. For example, use the following command (all
on one line):

rpm --install --excludedocs --prefix <directory> lispworks-8.1-n.i386.rpm

To install the documentation at a later stage, you need to use the --replacepkgs option:

rpm --install --prefix <directory> --replacepkgs lispworks-8.1-n.i386.rpm

4.4.4.7 Installing Patches

After completing the main RPM installation of LispWorks and any modules, ensure you install the latest patches from the
RPM file available for download at www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are
in the README file accompanying the patch download.

4 Installation on Linux

25

http://www.lispworks.com/downloads/patch-selection.html#lwl

4.4.5 Installation from the tar files

The LispWorks distribution is also provided as tar files compressed using gzip for use if you do not have an appropriate
version of RPM to unpack the RPM binary file. The gzipped files for LispWorks are as follows:

Files for LispWorks

lw81-x86-linux.tar.gz 32-bit LispWorks x86 image, modules and examples

lw81-arm-linux.tar.gz 32-bit LispWorks ARM image, modules and examples

lw81-amd64-linux.tar.gz 64-bit LispWorks x86_64 image, modules and examples

lw81-arm64-linux.tar.gz 64-bit LispWorks ARM64 image, modules and examples

lwdoc81-x86-linux.tar.gz Documentation in HTML and PDF formats for all
architectures

Note: The gzipped files for the LispWorks Personal Edition have similar names.

To install from these files:

1. Follow the instructions under 4.2 License agreement.

2. Use cd to change directory to the location of the downloaded files before running the installation script.

3. Run the installation script lwl-install.sh (or lwlper-install.sh for the Personal Edition). as root if the
directory specified by the installation directory requires it (the default does).

This script takes --prefix and --excludedocs arguments like rpm to control the installation directory and amount of
documentation installed.

For example, to install the Personal Edition and documentation in the default location
(/usr/local/lib/LispWorksPersonal) would use:

sh lwlper-install.sh

Or, to install 32-bit LispWorks in /usr/lispworks, without documentation you would use:

sh lwl-install.sh --excludedocs --prefix /usr/lispworks

Note: the default location under /usr/local is appropriate for this unmanaged (non-RPM) installation.

See 4.6 Running LispWorks for how to enter your license details.

4.4.5.1 Installing Patches

After completing the main tar installation of LispWorks, ensure you install the latest patches from the tar archive available
for download at www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are in the README
file accompanying the patch download.

4.5 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 4.6.1 Entering the license data below.

4 Installation on Linux

26

http://www.lispworks.com/downloads/patch-selection.html#lwl

For more information about license keys, see 10.2 License keys.

4.6 Running LispWorks

In a RPM installation, assuming the default prefix of /usr, the LispWorks executable is located in /usr/lib/LispWorks

or /usr/lib64/LispWorks or /usr/lib/LispWorksPersonal There is also a symbolic link from the /usr/bin
directory.

In a tar installation, assuming the default prefix of /usr/local, the LispWorks executable is located in
/usr/local/lib/LispWorks or /usr/local/lib64/LispWorks or /usr/local/lib/LispWorksPersonal.

In both cases, the LispWorks executable should not be moved without being resaved, because it needs to be able to locate the
corresponding library directory on startup.

The LispWorks executable is named as shown here:.

lispworks-personal-8-1-0-x86-linux Personal Edition

lispworks-8-1-0-x86-linux 32-bit LispWorks on x86

lispworks-8-1-0-amd64-linux 64-bit LispWorks on x86_64

lispworks-8-1-0-arm-linux 32-bit LispWorks on ARM

lispworks-8-1-0-arm64-linux 64-bit LispWorks on ARM64

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for details if this does not happen.

4.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
one line) using the appropriate LispWorks executable from the table above (32-bit LispWorks on x86 in this example):

lispworks-8-1-0-x86-linux --lwlicenseserial SERIALNUMBER --lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

4 Installation on Linux

27

4.7 Configuring the image

You can now configure your LispWorks image to suit your needs and load modules as necessary. For instructions, see 10
Configuration on Linux, x86/x64 Solaris & FreeBSD.

4.8 Printable LispWorks documentation

In a default installation, the lib/8-1-0-0/manual/offline directory contains PDF format versions of the manuals.

These files are also available from www.lispworks.com/documentation.

PostScript format versions of the manuals are also available for download.

4.9 Uninstalling LispWorks for Linux

A RPM installation of LispWorks can be uninstalled in the usual way, for example by executing this command, as root:

rpm --erase lispworks-8.1

If patches have been added via RPM, then you will first need to uninstall that package, which will be named
lispworks-patches8.1. The same applies to additional RPM packages such as lispworks-sql.

If patches have been added from a tar archive, you will need to remove them by hand.

If you installed LispWorks from the tar archives, simply do:

rm -rf /usr/local/lib/LispWorks

4.10 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

4.11 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispworks.com

4 Installation on Linux

28

http://www.lispworks.com/documentation
mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

5 Installation on x86/x64 Solaris

This chapter is an installation guide for LispWorks 8.1 (32-bit) for x86/x64 Solaris and LispWorks 8.1 (64-bit) for x86/x64
Solaris. 10 Configuration on Linux, x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but
this chapter presents the instructions necessary to get LispWorks up and running on your system.

5.1 Software and hardware requirements

An overview of system requirements is provided in System requirements on x86/x64 Solaris. The sections that follow
discuss any relevant details.

System requirements on x86/x64 Solaris

Hardware Requirements Software Requirements

For 32-bit LispWorks, 175 MB of disk space Solaris 10 (release 5/08 or later), Solaris 11, or
OpenSolaris (release 2009.06 or later)

For 64-bit LispWorks, 184 MB of disk space GTK+ 3 (version 3.24 or higher) or GTK+ 2 (version 2.4
or higher) to run the GTK+ GUI.
Motif 2.1 and Imlib to run the deprecated Motif GUI

Any modern machine is likely to have sufficient RAM to
run LispWorks as distributed.

Firefox or Opera web browser for viewing on-line
documentation

5.1.1 GUI libraries

LispWorks 8.1 for x86/x64 Solaris requires that the X11 release 6 (or higher) is installed. It also requires that either GTK+ or
Motif with Imlib are installed.

The remainder of this section contains the details for each of these distinct GUI options.

5.1.1.1 GTK+

In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

5.1.1.2 Motif

Motif 2.1 or higher is required to run LispWorks with the Motif GUI.

The Motif libraries are installed as part of the SUNWmfrun package. It is usually preinstalled on Solaris 10 and is available
for download from Sun for OpenSolaris.

You will also need Imlib (not Imlib2). Imlib version 1.9.13 or later is recommended. Contact Lisp Support if you need this.

29

5.1.2 Disk requirements

32-bit LispWorks requires about 175 MB to install.

64-bit LispWorks requires about 184 MB to install.

The installation includes about 100 MB of documentation.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispworks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

5.2 Software delivery and installer format

LispWorks 8.1 for x86/x64 Solaris is supplied as a standard package file to download.

There are two variants, 32-bit LispWorks and 64-bit LispWorks, so be sure to download the one for which you have
purchased a license:

5.2.1 Contents of the LispWorks distribution

All of the LispWorks modules are contained in a single package file. Your license key will control which modules can be
used.

The package name for 32-bit LispWorks is LispWorks81-32bit.

The package name for 64-bit LispWorks is LispWorks81-64bit.

5.2.2 Personal Edition distribution

You can install the LispWorks Personal Edition by downloading it from www.lispworks.com/downloads.

The package name for the 32-bit Personal Edition is LispWorksPersonal81-32bit.

The package name for the 64-bit Personal Edition is LispWorksPersonal81-64bit.

5.3 Installing LispWorks for x86/x64 Solaris

5.3.1 Main installation and patches

The LispWorks 8.1 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.1.x. You need to complete the main installation before adding patches.

5.3.2 Installing over previous versions

You can install LispWorks 8.1 in the same location as LispWorks 8.0 or previous versions.

5.3.3 Information for Beta testers

Users of LispWorks 8.1 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.1.

See 5.8 Uninstalling LispWorks for x86/x64 Solaris for instructions.

5 Installation on x86/x64 Solaris

30

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads

5.3.4 Installation directories

32-bit LispWorks is installed by default in /opt/LispWorks/lib/LispWorks and a symbolic link to the executable is
placed in /opt/LispWorks/bin/lispworks-8-1-0-x86-solaris.

64-bit LispWorks is installed by default in /opt/LispWorks/lib/amd64/LispWorks and a symbolic link to the
executable is placed in /opt/LispWorks/bin/lispworks-8-1-0-amd64-solaris.

32-bit LispWorks Personal Edition is installed by default in /opt/LispWorks/lib/LispWorksPersonal and a symbolic
link to the executable is placed in /opt/LispWorks/bin/lispworks-personal-8-1-0-x86-solaris.

64-bit LispWorks Personal Edition is installed by default in /opt/LispWorks/lib/amd64/LispWorksPersonal and a
symbolic link to the executable is placed in /opt/LispWorks/bin/lispworks-personal-8-1-0-x86-solaris.

Note: LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symbolic
link.

5.3.5 Selecting the correct software package file

The 32-bit LispWorks software package file is called LispWorks81-32bit.

The 64-bit LispWorks software package file is called LispWorks81-64bit.

The 32-bit Personal Edition software package file is called LispWorksPersonal81-32bit.

The 64-bit Personal Edition software package file is called LispWorksPersonal81-64bit.

Note: the software may be supplied in a compressed format with a .gz extension. Uncompress it using gunzip.

5.3.6 Installing the package file

To install LispWorks, perform the following steps as root:

1. Locate the software package file.

2. Install or upgrade LispWorks in the standard way, for example:

pkgadd -d LispWorks81-32bit all

for 32-bit LispWorks, or:

pkgadd -d LispWorks81-64bit all

for 64-bit LispWorks.

3. The license terms are presented. Enter "yes" if you agree to them.

See 5.5 Running LispWorks for instructions on entering your license serial number and key.

5.3.7 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches from the package file available for
download at www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

5 Installation on x86/x64 Solaris

31

http://www.lispworks.com/downloads/patch-selection.html#lws

5.4 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 5.5.1 Entering the license data below.

For more information about license keys, see 10.2 License keys.

5.5 Running LispWorks

Run LispWorks (all variants) from the directory /opt/LispWorks/bin.

The LispWorks executable is named as shown here:

lispworks-personal-8-1-0-x86-solaris 32-bit Personal Edition

lispworks-personal-8-1-0-amd64-solaris 64-bit Personal Edition

lispworks-8-1-0-x86-solaris 32-bit LispWorks

lispworks-8-1-0-amd64-solaris 64-bit LispWorks

This executable should not be moved without being resaved because it needs to be able to locate the corresponding library
directory on startup.

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for details if this does not happen.

5.5.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
one line):

lispworks-8-1-0-x86-solaris --lwlicenseserial SERIALNUMBER --lwlicensekey LICENSEKEY

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

5.6 Configuring the image

You can now configure your LispWorks image to suit your needs and load modules as necessary. For instructions, see 10
Configuration on Linux, x86/x64 Solaris & FreeBSD.

5 Installation on x86/x64 Solaris

32

5.7 Printable LispWorks documentation

In a default installation, the lib/8-1-0-0/manual/offline directory contains PDF format versions of the manuals.

These files are also available at www.lispworks.com/documentation/.

PostScript format versions of the manuals are also available for download.

5.8 Uninstalling LispWorks for x86/x64 Solaris

To uninstall LispWorks, perform the following steps as root:

1. If patches for LispWorks 8.1 have been installed then you will need to uninstall the patch package, by:

pkgrm LispWorksPatches81-32bit

or:

pkgrm LispWorksPatches81-64bit

2. Then uninstall the main software package containing LispWorks 8.1 by executing:

pkgrm LispWorks81-32bit

or:

pkgrm LispWorks81-64bit

5.9 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

5.10 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispworks.com

5 Installation on x86/x64 Solaris

33

http://www.lispworks.com/documentation/
mailto:lisp-sales@lispworks.com
mailto:lisp-sales@lispworks.com

6 Installation on FreeBSD

This chapter is an installation guide for LispWorks 8.1 (32-bit) for FreeBSD and LispWorks 8.1 (64-bit) for FreeBSD. 10
Configuration on Linux, x86/x64 Solaris & FreeBSD discusses post-installation and configuration in detail, but this
chapter presents the instructions necessary to get LispWorks up and running on your system.

6.1 Software and hardware requirements

An overview of system requirements is provided in System requirements on FreeBSD. The sections that follow discuss any
relevant details.

System requirements on FreeBSD

Hardware Requirements Software Requirements

179 MB of disk space for 32-bit LispWorks plus
documentation

FreeBSD 12.x, or later with compat12x
(if you want to run LispWorks on older versions of
FreeBSD, then please contact Lisp Support)

195 MB of disk space for 64-bit LispWorks plus
documentation

GTK+ 3 (version 3.24 or higher) or GTK+ 2 (version 2.4
or higher) to run the GTK+ GUI.
Open Motif 2.3.x and Imlib2 1.4.9 or later to run the
deprecated Motif GUI

Any modern machine is likely to have sufficient RAM to
run LispWorks as distributed.

Firefox or Opera web browser for viewing on-line
documentation

6.1.1 GUI libraries

LispWorks 8.1 for FreeBSD requires that the X11 release 6 (or higher) is installed.

LispWorks 8.1 also requires that either GTK+ or Open Motif with Imlib2 are installed.

The remainder of this section contains the details for each of these distinct GUI options.

6.1.1.1 GTK+

In order for the LispWorks IDE to run "out of the box", GTK+ must be installed on the target machine.

GTK+ 2 (version 2.4 or higher) is required.

6.1.1.2 Motif

Open Motif version 2.3 is required to run LispWorks with the Motif GUI.

Install Open Motif 2.3.x from the FreeBSD distribution or ports tree. Your systems administrator may be able to help if you
do not know how to do this.

You will also need Imlib2 version 1.4.9 or later. Install this from the FreeBSD distribution or ports tree.

34

6.1.2 Disk requirements

32-bit LispWorks requires about 179 MB to install, and 64-bit LispWorks needs 195 MB. This includes 109 MB of
documentation.

The documentation includes printable PDF format manuals. You may delete any of these that you do not need. They are
available at www.lispworks.com/documentation in any case, and the same manuals are also available there in PostScript
format.

6.2 License agreement

Before installing, you must read and agree to the license terms.

To do this download the license script from the link we sent to you.

Now run:

sh lwf-license.sh

or, if you are installing the Personal Edition:

sh lwfper-license.sh

Note: You must run this script as the same user that later performs the installation.

Enter "yes" if you agree to the license terms.

6.3 Software delivery and installer format

LispWorks 8.1 for FreeBSD is supplied as a standard package file, in pkg(8) format, to download.

6.3.1 Contents of the LispWorks distribution

All of the LispWorks modules are contained in a single package file. Your license key will control which modules can be
used.

The package name for 32-bit LispWorks is lispworks81-32bit.

The package name for 64-bit LispWorks is lispworks81-64bit.

6.3.2 Personal Edition distribution

You can install the LispWorks Personal Edition by downloading it from www.lispworks.com/downloads.

The package name for the 32-bit Personal Edition is lispworkspersonal81-32bit.

The package name for the 64-bit Personal Edition is lispworkspersonal81-64bit.

6 Installation on FreeBSD

35

http://www.lispworks.com/documentation
http://www.lispworks.com/downloads

6.4 Installing LispWorks for FreeBSD

6.4.1 Main installation and patches

The LispWorks 8.1 installer contains each of the Editions. Additionally, there may be a patch installer which upgrades
LispWorks to version 8.1.x. You need to complete the main installation before adding patches.

6.4.2 Installing over previous versions

You can install LispWorks 8.1 in the same location as LispWorks 8.0 or previous versions.

6.4.3 Information for Beta testers

Users of LispWorks 8.1 Beta should completely uninstall it (including any patches added to the beta installation) before
installing LispWorks 8.1.

See 6.9 Uninstalling LispWorks for FreeBSD for instructions.

6.4.4 Installation directories

By default LispWorks is installed in /usr/local/lib/LispWorks. A symbolic link to the 32-bit executable is placed in
/usr/local/bin/lispworks-8-1-0-x86-freebsd. A symbolic link to the 64-bit executable is placed in
/usr/bin/lispworks-8-1-0-amd64-freebsd.

Note: the Personal Edition by default installs in /usr/local/lib/LispWorksPersonal. Do not attempt to to install
different editions in the same location, since some filenames coincide and uninstallation may break.

6.4.5 Selecting the correct software package file

The 32-bit LispWorks software package file is called:

lispworks81-32bit-8.1.pkg

The 64-bit LispWorks software package file is called:

lispworks81-64bit-8.1.pkg

The 32-bit Personal Edition software package file is called:

lispworkspersonal81-32bit-8.1.pkg

The 64-bit Personal Edition software package file is called:

lispworkspersonal81-64bit-8.1.pkg

6.4.6 Installing LispWorks for FreeBSD

To install LispWorks, perform the following steps as root:

1. Follow the instructions under 6.2 License agreement.

2. Locate the software package file.

6 Installation on FreeBSD

36

3. Install or upgrade LispWorks in the standard way, for example:

pkg add lispworks81-32bit-8.1.pkg

This command installs LispWorks in /usr/local/lib/LispWorks.

Note: LispWorks needs to be able find its library at run time and therefore the LispWorks installation should not be moved
around piecemeal. If you simply want to run LispWorks from somewhere more convenient, then consider adding a symbolic
link.

See 6.6 Running LispWorks for instructions on entering your license details.

6.4.7 Installing Patches

After completing the main installation of LispWorks, ensure you install the latest patches from the package file available for
download at www.lispworks.com/downloads/patch-selection.html. Patch installation instructions are in the README file
accompanying the patch download.

6.5 LispWorks looks for a license key

If you try to run LispWorks without a valid key, it prints a message reporting that no valid key was found, and exits.

For instructions on entering your license key, see 6.6.1 Entering the license data below.

For more information about license keys, see 10.2 License keys.

6.6 Running LispWorks

The LispWorks executable is located in the /usr/local/lib/LispWorks or /usr/local/lib/LispWorksPersonal
directory of the installation (assuming the default prefix of /usr/local) and should not be moved without being resaved
because it needs to be able to locate the corresponding library directory on startup. There is also a symbolic link from the
/usr/local/bin directory.

The LispWorks executable is named as shown here:.

lispworks-personal-8-1-0-x86-freebsd 32-bit Personal Edition

lispworks-personal-8-1-0-amd64-freebsd 64-bit Personal Edition

lispworks-8-1-0-x86-freebsd 32-bit LispWorks

lispworks-8-1-0-amd64-freebsd 64-bit LispWorks

When you run LispWorks, the splashscreen should appear, followed by the LispWorks Podium and a Listener. See 11.1
Troubleshooting for details if this does not happen.

6.6.1 Entering the license data

When you run LispWorks for the first time, you will need to enter your license details. This should be done as follows (all on
one line):

lispworks-8-1-0-x86-freebsd --lwlicenseserial SERIALNUMBER --lwlicensekey LICENSEKEY

6 Installation on FreeBSD

37

http://www.lispworks.com/downloads/patch-selection.html#lwf

where SERIALNUMBER and LICENSEKEY are the strings supplied with LispWorks. A message:

LispWorks license installed successfully.

should be printed and thereafter you can run LispWorks without those command line arguments.

Your license key will be supplied to you in email from Lisp Support or Lisp Sales.

If you have problems with your LispWorks license key, send it to lisp-keys@lispworks.com, showing the complete
output after you enter it.

Note: the LispWorks Personal Edition does not ask you to enter license data.

6.7 Configuring the image

You can now configure your LispWorks image to suit your needs and load modules as necessary. For instructions, see 10
Configuration on Linux, x86/x64 Solaris & FreeBSD.

6.8 Printable LispWorks documentation

In a default installation, the lib/8-1-0-0/manual/offline directory contains PDF format versions of the manuals.

These files are also available at www.lispworks.com/documentation/.

PostScript format versions of the manuals are also available for download.

6.9 Uninstalling LispWorks for FreeBSD

To uninstall LispWorks, perform the following steps as root:

1. If patches have been installed, then you will first need to uninstall that package:

pkg delete lispworks81-patches-32bit

or:

pkg delete lispworks81-patches-64bit

2. Then uninstall the main software package containing LispWorks 8.1:

pkg delete lispworks81-32bit

or:

pkg delete lispworks81-64bit

6.10 Upgrading the LispWorks Edition

Some LispWorks features such as Delivery, Common SQL and KnowledgeWorks are not available in all Editions. You can
add these features by upgrading.

After purchasing your upgrade from lisp-sales@lispworks.com, select Help > Register... and enter your new license key.

6 Installation on FreeBSD

38

http://www.lispworks.com/documentation/
mailto:lisp-sales@lispworks.com

6.11 Upgrading to 64-bit LispWorks

To upgrade from 32-bit to 64-bit LispWorks, contact:

lisp-sales@lispworks.com

6 Installation on FreeBSD

39

mailto:lisp-sales@lispworks.com

7 Installation of LispWorks for Mobile
Runtime

This chapter describes installation of LispWorks 8.1 for Android Runtime and LispWorks 8.1 for iOS Runtime.

7.1 Installing LispWorks for Android Runtime

We will send you instructions when you get a license for LispWorks for Android Runtime.

Note: Normally you would first develop and debug your program using LispWorks on a desktop platform, for example
LispWorks for Linux. You will then build a runtime library using LispWorks for Android Runtime and incorporate it in an
Android project (see "Android interface" in the LispWorks® User Guide and Reference Manual) before testing it on an
Android device.

7.2 Installing LispWorks for iOS Runtime

We will send you instructions when you get a license for LispWorks for iOS Runtime.

Note: Normally you would first develop and debug your program using LispWorks for Macintosh. You will then build a
runtime library using LispWorks for iOS Runtime and incorporate it in an Xcode project (see "iOS interface" in the
LispWorks® User Guide and Reference Manual) before testing it on an iOS device or the iOS Simulator on macOS.

40

8 Configuration on macOS

8.1 Introduction

This chapter explains how to get LispWorks up and running, having already installed the files into an appropriate folder. If
you have not done this, refer to 2 Installation on macOS.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

• 8.2 License keys

• 8.3 Configuring your LispWorks installation

• 8.4 Saving and testing the configured image

• 8.5 Initializing LispWorks

• 8.6 Loading CLIM 2.0

• 8.7.1 Loading Common SQL

• 8.8 Common Prolog and KnowledgeWorks

8.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key mechanism. LispWorks will not start up until it
finds a file containing a valid key.

The image looks for a file lwlicense in the following places, in order:

• In the current working directory (folder).

• In the directory containing the LispWorks executable.

• In the Library/lib/8-1-0-0/config subdirectory of the LispWorks installation directory.

When the file lwlicense is found, it must contain a valid key for the current machine. If you try to run LispWorks without a
valid key, a message will be printed to the console reporting that no valid key was found, and LispWorks will exit.

8.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

41

8.3.1 Levels of configuration

There are two levels of configuration:

• Configuring and resaving the image, thereby creating a new image that is exactly as you want it at startup.

• Configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration details may be of use to all LispWorks users on
your machine (for instance, having a particular library built into the image where before it was only load-on-demand) others
may be a matter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

In the first case, you use edited copies of files in the config folder to achieve your aims.

In the second case, you make entries in your initialization file. This is a file read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) By default the file is called .lispworks and is in your home directory. Your initialization file can be changed via
LispWorks > Preferences... from the LispWorks IDE.

8.3.2 Configuring images for the different GUIs

If you have installed both the LispWorks images, for native macOS and for GTK+, you will want to configure two images.

If necessary your Lisp configuration and initialization files can run code for one image or the other by conditionalization on
the feature :cocoa. The native macOS LispWorks image has :cocoa on *features* while the GTK+ LispWorks image
does not, and has :gtk.

8.3.3 Configuration files available

There are four sample configuration files in LispWorks library containing settings you can change in order to configure
images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settings in your saved
image or in your initialization file. You should read through configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole site but which are to be loaded afresh each
time the image is started. The sample siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that order. The command line options
-siteinit and -init can be used to specify loading of different files or to suppress them altogether. See the example in
8.4 Saving and testing the configured image, below, and 8.5 Initializing LispWorks for further details.

private-patches/load.lisp is loaded by load-all-patches, and should contain forms to load any private (named)
patches that Lisp Support might send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You might like to copy this into a file

8 Configuration on macOS

42

http://www.lispworks.com/documentation/HyperSpec/Body/v_featur.htm

~/.lispworks in your home directory and edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the image before it is shipped, so if you are happy
with the settings in these files, you need not change them. See the example in 8.4 Saving and testing the configured image,
below, and 8.5 Initializing LispWorks for further details.

8.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

8.4.1 Create a configuration file

Make a copy of config/configure.lisp called /tmp/my-configuration.lisp. When you have made the desired
changes in my-configuration.lisp you can save a new LispWorks image as described in 8.4.2 Create and use a save-
image script.

8.4.2 Create and use a save-image script

1. Create a configuration and saving script /tmp/save-config.lisp containing:

(in-package "CL-USER")
(load-all-patches)
(load "/tmp/my-configuration.lisp")
#+:cocoa
(save-image-with-bundle "/Applications/My LispWorks/LW")
#-:cocoa
(save-image "my-lispworks-gtk")

2. Change directory to the directory containing the LispWorks image to configure. For the native macOS/Cocoa LispWorks
image:

% cd "/Applications/LispWorks 8.1 (64-bit)/LispWorks (64-bit).app/Contents/MacOS"

or for the X11/GTK+ LispWorks image:

% cd "/Applications/LispWorks 8.1 (64-bit)"

3. Start the supplied image passing the configuration script the build file. For example enter one of the following
commands (on one line of input):

% ./lispworks-8-1-0-macos64-universal -build /tmp/save-config.lisp

or:

% ./lispworks-8-1-0-macos64-universal-gtk -build /tmp/save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new My LispWorks/LW.app application bundle or the my-lispworks-gtk image by starting it just

8 Configuration on macOS

43

as you did the supplied LispWorks. The supplied LispWorks is not required after the configuration process has been
successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save-image has returned.

8.4.3 What to do if no image is saved

If no new image is saved, then there is some error while loading the build script. To see the error message, run the command
with output redirected to a file, for example:

% ./lispworks-8-1-0-macos64-universal -build /tmp/save-config.lisp > /tmp/output.txt

Look in the file /tmp/output.txt.

8.4.4 Testing the newly saved image

You should now test the new LispWorks image. To test a configured LispWorks, do the following:

1. If you are using an X11/GTK+ image, change directory to /tmp.

2. When using X11, verify that your DISPLAY environment variable is correctly set and that your machine has permission
to connect to the display.

3. Start up the new image, by entering the path of the X11/GTK+ executable or by double-clicking on the LispWorks icon
in the macOS Finder.

The window-based environment should now initialize—during initialization a window displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examples in the LispWorks® User Guide and Reference Manual, to further
check that the configured image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the load-on-demand
Library directory.

You can quit the inspector by typing :q.

8.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 8.4.2 Create and use a save-image
script but pass the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

8 Configuration on macOS

44

8.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization file to load. The name of the file is held in *init-file-name*, and
is ~/.lispworks by default. The '~' denotes your home directory, indicated as Home in the Finder. The initialization file
may contain any valid Lisp code.

You can load a different initialization file using the option -init in the command line, for example:

% "/Applications/LispWorks 8.1 (64-bit)/LispWorks (64-bit).app/Contents/MacOS/lispworks-8-1-0-
macos64-universal" -init my-lisp-init

(where % denotes the Unix shell prompt) would make LispWorks load my-lisp-init.lisp as the initialization file instead
of that named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp) is similarly controlled by the -siteinit
command line argument or *site-init-file-name*.

You can start an image without loading any personal or site initialization file by passing a hyphen to the -init and
-siteinit arguments instead of a filename:

% "/Applications/LispWorks 8.1 (64-bit)/LispWorks (64-bit).app/Contents/MacOS/lispworks-8-1-0-
macos64-universal" -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is often useful to start the image in this way when
trying to repeat a suspected bug. You should always start the image without the default initialization files if you are intending
to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to load it as a normal file by calling load. If the
load fails, LispWorks prints an error report.

8.6 Loading CLIM 2.0

CLIM 2.0 is supported on the X11/Motif GUI.

Load CLIM 2.0 into the "LispWorks for X11 IDE" image with:

(require "clim")

and the CLIM demos with:

(require "clim-demo")

A configuration file to save an image with CLIM 2.0 preloaded would look something like this:

(in-package "CL-USER")
(load-all-patches)
(require "clim")
(save-image "/path/to/clim-lispworks")

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

Note: CLIM is not supported by the LispWorks native macOS image and cannot be loaded into it.

8 Configuration on macOS

45

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

Note: CLIM is not supported under GTK+.

Note: Do not attempt to load CLIM via the clim loader files in the clim distribution. This will cause CLIM patches to not be
loaded. Use (require "clim").

8.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section "Supported Databases"
of the LispWorks® User Guide and Reference Manual.

8.7.1 Loading Common SQL

To load Common SQL enter, for example:

(require "odbc")

or:

(require "oracle")

Initialize the database type at run time, for example:

(sql:initialize-database-type :database-type :odbc)

or:

(sql:initialize-database-type :database-type :oracle)

See the LispWorks® User Guide and Reference Manual for further information.

8.7.2 Supported databases

Common SQL on macOS has been tested with DBMS Postgres 7.2.1, MySQL 5.0.18, Oracle Instant Client 10.2.0.4, ODBC
driver PSQLODBC development code, and IODBC as supplied with macOS.

8.7.3 Special considerations when using Common SQL

8.7.3.1 Location of .odbc.ini

The current release of macOS comes with an ODBC driver manager from IODBC, including a GUI interface. IODBC
attempts to put the file .odbc.ini file in a non-standard location. This causes problems at least with the PSQLODBC driver
for PostgreSQL, because PSQLODBC expects to find .odbc.ini in either the users's home directory or the current
directory. There may be similar problems with other drivers. Therefore the file .odbc.ini should be placed in its standard
place ~/.odbc.ini. The IODBC driver manager looks there too, so it will work.

8.7.3.2 Errors using PSQLODBC

The PSQLODBC driver, when it does not find any of the Servername, Database or Username in .odbc.ini, returns the
wrong error code. This tells the calling function that the user cancelled the login dialog.

Therefore, if Common SQL reports that the user cancelled when trying to connect, you need to check that you have got

8 Configuration on macOS

46

Servername, Database and Username, with the correct case, in the section for the datasource in the .odbc.ini file.

Note: Username may alternatively be given in the connect string.

8.7.3.3 psqlODBC version

Common SQL was tested with the development version of psqlODBC (that is downloaded from CVS), with the version
changed to 3. Contact Lisp Support if you need help using Common SQL with psqlODBC.

8.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

For database-type :oracle, :mysql and :postgresql, if the client library is not installed in a standard place, its directory
must be added to the environment variable DYLD_LIBRARY_PATH (see the OS manual entry for dyld).

8.8 Common Prolog and KnowledgeWorks

Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

8 Configuration on macOS

47

9 Configuration on Windows

9.1 Introduction

This chapter explains how to get LispWorks up and running, having already installed it If you have not done this, refer to 3
Installation on Windows.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

• 9.2 License keys

• 9.3 Configuring your LispWorks installation

• 9.4 Saving and testing the configured image

• 9.5 Initializing LispWorks

• 9.6 Loading CLIM 2.0

• 9.7 The Common SQL interface

• 9.8 Common Prolog and KnowledgeWorks

9.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key protection mechanism. LispWorks will not
start up until it finds a valid key.

The image looks for a valid license key in the Windows registry.

If you try to run LispWorks without a valid key, it will prompt for a serial number and key.

9.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

9.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image, thereby creating a new image that is exactly as
you want it at startup, and configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration details may be of use to all LispWorks users on
your site (for instance, having a particular library built in to the image where before it was only load-on-demand) others may
be a matter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

48

In the first case, you use edited copies of files in the config folder to achieve your aims.

In the second case, you make entries in your initialization file. This is a file read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) Your initialization file can be changed via Tools > Preferences... in the LispWorks IDE.

9.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing settings you can change in order to configure
images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settings in your saved
image or in your initialization file. You should read through configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole site but which are to be loaded afresh each
time the image is started. The sample siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that order. The command line options
-siteinit and -init can be used to specify loading of different files or to suppress them altogether. See the example in
9.4 Saving and testing the configured image, below, and 9.5 Initializing LispWorks for further details.

private-patches/load.lisp is loaded by load-all-patches, and should contain forms to load any private (named)
patches that Lisp Support might send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You might like to copy this somewhere
convenient and edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the image before it is shipped, so if you are happy
with the settings in these files, you need not change them. See the example in 9.4 Saving and testing the configured image,
below, and 9.5 Initializing LispWorks for further details.

9.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

9.4.1 Create a configuration file

Make a copy of config\configure.lisp called C:\temp\my-configuration.lisp. When you have made any
desired changes in my-configuration.lisp you can save a new LispWorks image, as described in 9.4.2 Create and use
a save-image script.

9 Configuration on Windows

49

9.4.2 Create and use a save-image script

1. Create a configuration and saving script C:\temp\save-config.lisp, containing:

(in-package "CL-USER")
(load-all-patches)
(load "C:/temp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

C:

cd %PROGRAMFILES%\LispWorks

3. Start the supplied image using the configuration script as the build file. For example:

C:\Program Files (x86)\LispWorks>lispworks-8-1-0-x86-win32.exe -build C:\temp\save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new my-lispworks.exe image from the Windows Explorer, or you may choose to add a shortcut. The
supplied image is not required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save-image has returned.

9.4.3 What to do if no image is saved

If the LispWorks splash screen appears briefly but no image is saved, then there is some error while loading the build script.
To see the error message, run the command with output redirected to a file, for example:

C:\Program Files (x86)\LispWorks>lispworks-8-1-0-x86-win32.exe -build C:\temp\save-config.lisp >
C:\temp\output.txt

Look in the file c:\temp\output.txt.

9.4.4 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of LispWorks, do the following:

1. Start up the new image.

The window-based environment should now initialize—during initialization a window displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examples in the LispWorks® User Guide and Reference Manual, to further
check that the configured image has been successfully built.

2. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the load-on-demand

9 Configuration on Windows

50

directory.

You can quit the inspector by typing :q.

9.4.5 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 9.4.2 Create and use a save-image
script but pass the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

9.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization file to load. The name of the file is held in *init-file-name*, and
is ~/.lispworks by default. You can use cl:parse-namestring to see the expansion of this path. The file may contain
any valid Lisp code.

You can load a different initialization file using the option -init in the command line, for example (all on one line):

C:\Program Files\LispWorks>lispworks-8-1-0-x86-win32.exe -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config\siteinit.lisp) is similarly controlled by the -siteinit
command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file by passing a hyphen to the -init and
-siteinit arguments instead of a filename:

C:\Program Files\LispWorks>lispworks-8-1-0-x86-win32.exe -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is often useful to start the image in this way when
trying to repeat a suspected bug. You should always start the image without the default initialization files if you are intending
to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to load it as a normal file by calling load. If the
load fails, LispWorks prints an error report.

9.6 Loading CLIM 2.0

Load CLIM 2.0 into LispWorks 8.1 with:

(require "clim")

and the CLIM demos with:

(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry points in LispWorks 3).

9 Configuration on Windows

51

http://www.lispworks.com/documentation/HyperSpec/Body/f_pars_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

A configuration file to save an image with CLIM 2.0 preloaded would look something like this:

(in-package "CL-USER")
(load-all-patches)
(require "clim")
(save-image "C:\\path\\to\\clim-lispworks")

9.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see. More information about the demos is in section
"The CLIM demos" of the Common Lisp Interface Manager 2.0 User's Guide.

9.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section "Supported databases" of
the LispWorks® User Guide and Reference Manual.

9.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at run time call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:

(require "mysql")

and at run time call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks® User Guide and Reference Manual for further information.

9.8 Common Prolog and KnowledgeWorks

Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

9 Configuration on Windows

52

9.9 Runtime library requirement on Windows

LispWorks for Windows requires the Microsoft Visual Studio runtime library msvcr80.dll. The LispWorks installer
installs this DLL if it is not present.

Applications you build with LispWorks for Windows also require this DLL, so you must ensure it is available on target
machines.

9 Configuration on Windows

53

10 Configuration on Linux, x86/x64 Solaris
& FreeBSD

10.1 Introduction

This chapter explains how to get LispWorks up and running on Linux, x86/x64 Solaris or FreeBSD, having already installed
it. If you have not done this, refer to 4 Installation on Linux, 5 Installation on x86/x64 Solaris, or 6 Installation on
FreeBSD.

It is more useful to have an image customized to suit your particular environment and work needs. You can do this—setting
useful pathnames, loading libraries, and so on—and then save the image to create another that will be configured as you
require whenever you start it up.

This chapter covers the following topics:

• 10.2 License keys

• 10.3 Configuring your LispWorks installation

• 10.4 Saving and testing the configured image

• 10.5 Initializing LispWorks

• 10.6 Loading CLIM 2.0

• 10.7 The Common SQL interface

• 10.8 Common Prolog and KnowledgeWorks

10.2 License keys

LispWorks is protected against unauthorized copying and use by a simple key protection mechanism. LispWorks will not
start up until it finds a file containing a valid key.

The image looks for a file lwlicense in the following places, in order:

• In the current working directory.

• In the directory containing the LispWorks executable.

• In the lib/8-1-0-0/config subdirectory of the LispWorks installation directory.

When the file lwlicense is found, it must contain a valid key for the current machine. If you try to run LispWorks without a
valid key, a message will be printed reporting that no valid key was found, and LispWorks will exit.

54

10.3 Configuring your LispWorks installation

Once you have successfully installed and run LispWorks, you can configure it to suit your local conditions and needs,
producing an image that is set up the way you want it to be every time you start it up.

10.3.1 Levels of configuration

There are two levels of configuration: configuring and resaving the image, thereby creating a new image that is exactly as
you want it at startup, and configuring certain aspects of LispWorks as it starts up.

These two levels are available for good reason: while some configuration details may be of use to all LispWorks users on
your site (for instance, having a particular library built in to the image where before it was only load-on-demand) others may
be a matter of personal preference (for instance how many editor windows are allowed on-screen, or the colors of tool
windows).

In the first case, you use edited copies of files in the config directory to achieve your aims.

In the second case, you make entries in your initialization file. This is a file read every time LispWorks starts up, and it can
contain any valid Common Lisp code. (Most of the configurable settings in LispWorks can be controlled from Common
Lisp.) By default the file is called .lispworks and is in your home directory. Your initialization file can be changed via
Tools > Preferences... in the LispWorks IDE.

10.3.2 Configuration files available

There are four sample configuration files in LispWorks library containing settings you can change in order to configure
images:

• config/configure.lisp

• config/siteinit.lisp

• private-patches/load.lisp

• config/a-dot-lispworks.lisp

config/configure.lisp is preloaded into the image before it is shipped. It contains settings governing fundamental
issues like where to find the LispWorks run time folder structure, and so on. You can override these settings in your saved
image or in your initialization file. You should read through configure.lisp .

config/siteinit.lisp contains any forms that are appropriate to the whole site but which are to be loaded afresh each
time the image is started. The sample siteinit.lisp file distributed with LispWorks contains only the form:

(load-all-patches)

On startup, the image loads siteinit.lisp and your initialization file, in that order. The command line options
-siteinit and -init can be used to specify loading of different files or to suppress them altogether. See the example in
10.4 Saving and testing the configured image, below, and 10.5 Initializing LispWorks for further details.

private-patches/load.lisp is loaded by load-all-patches, and should contain forms to load any private (named)
patches that Lisp Support might send you.

config/a-dot-lispworks.lisp is a sample personal initialization file. You might like to copy this into a file
~/.lispworks in your home directory and edit it to create your own initialization file.

Both configure.lisp and a-dot-lispworks.lisp are preloaded into the image before it is shipped, so if you are happy
with the settings in these files, you need not change them. See the example in 10.4 Saving and testing the configured
image, below, and 10.5 Initializing LispWorks for further details.

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

55

10.4 Saving and testing the configured image

It is not usually necessary to save an image merely to preload patches and your configuration, because these load very quickly
on modern machines.

However, if you want to save an image to reduce startup time for a complex configuration (such as large application code) or
to save a non-windowing image, then proceed as described in this section.

10.4.1 Create a configuration file

Make a copy of config/configure.lisp called /tmp/my-configuration.lisp. When you have made any desired
changes in my-configuration.lisp you can save a new LispWorks image, as described in 10.4.2 Create and use a save-
image script.

10.4.2 Create and use a save-image script

1. Create a configuration and saving script /tmp/save-config.lisp, containing:

(in-package "CL-USER")
(load-all-patches)
(load "/tmp/my-configuration.lisp")
(save-image "my-lispworks")

2. Change directory to the LispWorks installation directory, for example:

% cd /usr/local/lib/LispWorks

3. Start the supplied image using the configuration script as the build file. For example:

% lispworks-8-1-0-x86-linux -build /tmp/save-config.lisp

If the image will not run at this stage, it is probably not finding a valid key.

Saving the image takes some time.

You can now use the new my-lispworks image by starting it just as you did the supplied image. The supplied image is not
required after the configuration process has been successfully completed.

Do not try to save a new image over an image that is currently running. Instead, save an image under a unique name, and
then, if necessary, replace the new image with the old one after the call to save-image has returned.

10.4.3 Testing the newly saved image

You should now test the new LispWorks image. To test a configured version of LispWorks, do the following:

1. Change directory to /tmp.

2. Verify that your DISPLAY environment variable is correctly set and that your machine has permission to connect to the
display.

3. Start up the new image.

The window-based environment should now initialize—during initialization a window displaying a copyright notice will
appear on the screen.

You may wish to work through some of the examples in the LispWorks® User Guide and Reference Manual, to further

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

56

check that the configured image has been successfully built.

4. Test the load-on-demand system. In the Listener, type:

CL-USER 1 > (inspect 1)

Before information about the fixnum 1 is printed, the system should load the inspector from the load-on-demand
directory.

You can quit the inspector by typing :q.

10.4.4 Saving a non-windowing image

For some purposes such as scripting it is convenient to have a LispWorks image that does not start the graphical programming
environment.

To save an image which does not automatically start the GUI, use a script as described in 10.4.2 Create and use a save-
image script but pass the :environment argument to save-image. For example:

(save-image "my-tty-lispworks" :environment nil)

10.5 Initializing LispWorks

When LispWorks starts up, it looks for an initialization file to load. The name of the file is held in *init-file-name*, and
is ~/.lispworks by default. ~ denotes your home directory. The file may contain any valid Lisp code.

You can load a different initialization file using the option -init in the command line, for example:

% lispworks-8-1-0-x86-linux -init my-lisp-init

would make LispWorks load my-lisp-init.lisp as the initialization file instead of that named by *init-file-name*.

The loading of the siteinit file (located by default at config/siteinit.lisp) is similarly controlled by the -siteinit
command line argument or
site-init-file-name.

You can start an image without loading any personal or site initialization file by passing a hyphen to the -init and
-siteinit arguments instead of a filename:

% lispworks-8-1-0-x86-linux -init - -siteinit -

This starts the LispWorks image without loading any initialization file. It is often useful to start the image in this way when
trying to repeat a suspected bug. You should always start the image without the default initialization files if you are intending
to resave it.

In all cases, if the filename is present, and is not a hyphen, LispWorks tries to load it as a normal file by calling load. If the
load fails, LispWorks prints an error report.

10.6 Loading CLIM 2.0

Load CLIM 2.0 into LispWorks 8.1 with:

(require "clim")

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

57

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

and the CLIM demos with:

(require "clim-demo")

rather than the clim loader files in the clim distribution (which were the entry points in LispWorks 3).

A configuration file to save an image with CLIM 2.0 preloaded would look something like this:

(in-package "CL-USER")
(load-all-patches)
(require "clim")
(save-image "/path/to/clim-lispworks")

10.6.1 Running the CLIM demos

To run the demo software, enter the following in a listener:

(require "clim-demo")
(clim-demo:start-demo)

This displays a menu listing all the demos. Choose the demo you wish to see. More information about the demos is in section
"The CLIM demos" of the Common Lisp Interface Manager 2.0 User's Guide.

10.7 The Common SQL interface

The Common SQL interface requires ODBC or one of the supported database types listed in section "Supported databases" of
the LispWorks® User Guide and Reference Manual.

10.7.1 Loading the Common SQL interface

To load the Common SQL interface to use ODBC enter:

(require "odbc")

and at run time call:

(sql:initialize-database-type :database-type :odbc)

and then you can connect to any installed ODBC datasource.

To load the Common SQL interface to use MySQL, enter:

(require "mysql")

and at run time call:

(sql:initialize-database-type :database-type :mysql)

See the LispWorks® User Guide and Reference Manual for further information.

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

58

10.8 Common Prolog and KnowledgeWorks

Common Prolog is bundled with KnowledgeWorks rather than with LispWorks. KnowledgeWorks is loaded by using:

(require "kw")

See the KnowledgeWorks and Prolog User Guide for further instructions.

10.9 Documentation on x86/x64 Solaris and FreeBSD

Except where explicitly mentioned, information stated as specific to LispWorks for Linux also applies to LispWorks for
x86/x64 Solaris and LispWorks for FreeBSD.

10 Configuration on Linux, x86/x64 Solaris & FreeBSD

59

11 Troubleshooting, Patches and Reporting
Bugs

This chapter discusses other issues that arise when installing and configuring LispWorks. It provides solutions for possible
problems you may encounter, and it discusses the patch mechanism and the procedure for reporting bugs.

11.1 Troubleshooting

This section describes some of the most common problems that can occur on any platform during installation or
configuration.

11.1.1 License key errors

LispWorks looks for a valid license key when it is started up. If a problem occurs at this point, LispWorks exits.

These are the possible problems:

• LispWorks cannot find or read the key.

• The key is incorrect.

• Your license has expired, making the key no longer valid.

On Linux, x86/x64 Solaris and FreeBSD, this is also a possible cause of the problem:

• The machine name has changed since LispWorks was installed.

On macOS, Linux, x86/x64 Solaris and FreeBSD, the key is expected to be stored in a keyfile, and an appropriate error
message is printed at the terminal for each case. If this message does not help you to resolve the problem, report it to Lisp
Support and include the terminal output.

On Windows, the key is expected to be stored in the Windows registry. If you cannot resolve the problem, export your
HKEY_LOCAL_MACHINE\SOFTWARE\LispWorks registry tree and include this with your report to Lisp Support.

11.1.2 Failure of the load-on-demand system

Module files are in the modules directory lib/8-1-0-0/load-on-demand under *lispworks-directory*.

If loading files on demand fails to work correctly, check that the modules directory is present. If it is not, perhaps your
LispWorks installation is corrupted.

Do not remove any files from the modules directory unless you are really certain they will never be required.

The supplied image contains a trigger which causes *lispworks-directory* to be set on startup and hence you should
not need to change its value. Subsequently saved images do not have this trigger.

60

11.1.3 Build phase (delivery-time) errors

A common cause of errors seen while building (delivering) an application is running part of the application's run time
initialization, or something else that assumes the application is already running.

One error sometimes seen is "Not yet multiprocessing." and other likely build phase errors include those arising from
code that assumes something about the run time environment.

Such initializations should be done at the start of the run time phase, as described in "Separate run time initializations from
the build phase" in the Delivery User Guide.

11.1.4 Memory requirements

To run the full LispWorks system, with its GUI, you will need around 30 MB of swap space for the image and whatever else
is necessary to accommodate your application.

We recommend that you routinely check the size of your image using cl:room, whether you see warning messages or not.

When running a large image, you may occasionally see:

<**> Failed to enlarge memory

printed to the standard output.

The message means that the LispWorks image is close to the limit: it attempted to expand one of the GC generations, but
there was not enough swap space to accommodate the resulting growth in image size. When this happens, the garbage
collector is invoked. It will usually manage to free the required space, but if it cannot then crashes may result. Therefore you
should take action to reduce allocation or increase available memory when you see this message.

Check the size of the image, both by cl:room and by OS facilities (such as ps or top on *nix, Task Manager on Windows)
to see if all the sizes are as expected. If there are large discrepancies, check them.

Occasionally, however, continued demand for additional memory will end up exhausting resources. You will then see the
message above repeatedly, and there will be little or no other activity apparent in the image. At this point you should restart
the image, or increase swap space. In cases where external libraries are mapped above LispWorks and inhibit its growth, you
may be able to relocate LispWorks, as described under "Startup relocation" in the LispWorks® User Guide and Reference
Manual.

11.1.5 Corrupted LispWorks executable

Programs which attempt to clean up your machine by automatically removing data they identify as unnecessary may
accidentally corrupt your LispWorks executable, because they do not understand its format. This will prevent LispWorks
from starting.

Examples are the prelink cron job on Linux and CleanMyMac on Macintosh. These particular programs should no longer
affect LispWorks, but there may be similar utilities in use.

If corruption occurs check if it has been caused by a clean-up utility. If this is the case, firstly configure your clean-up utility
to ignore LispWorks, and then reinstall LispWorks.

11 Troubleshooting, Patches and Reporting Bugs

61

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm

11.2 Troubleshooting on Windows

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Windows.

11.2.1 Private patches not loaded on Windows 7, 8 & 10

Modify private-patches\load.lisp only via the menu command Help > Install Private Patches... to avoid problems
with redirected files.

If your LispWorks installation is in the %ProgramFiles% folder and you edit private-patches\load.lisp directly,
then Windows starts to use a redirected private copy of load.lisp. Help > Install Private Patches... will not update this
copy, and thus your new patches will not be loaded.

If this occurs, the solution is to delete the redirected copy of load.lisp from your user profile space. On Windows 8 the
location is like this:

C:\Users\lw\AppData\Local\VirtualStore\Program Files (x86)\LispWorks\lib\8-1-0-0\private-patches\

11.3 Troubleshooting on macOS

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Macintosh.

If you're using the LispWorks image with the X11/Motif GUI, see also 11.7 Troubleshooting on X11/Motif below for issues
specific to X11/Motif.

11.3.1 Uninstall requires administrator on macOS

You must be logged on an as administrator in order to run uninstall.command to uninstall LispWorks. This is because it
uses the sudo command.

11.4 Troubleshooting on Linux

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for Linux.

See also 11.7 Troubleshooting on X11/Motif below for issues specific to X11/Motif.

11.4.1 Processes hanging

Some versions of Linux have a broken pthreads library. To workaround this set the environment variable
LD_ASSUME_KERNEL=2.4.19 before running LispWorks. LD_ASSUME_KERNEL allows using older versions of
pthreads, some of which do not work.

LispWorks 8.1 supports any Linux distribution with glibc 2.6 or later.

11.4.2 RPM_INSTALL_PREFIX not set

On Linux, during installation of CLIM, Common SQL, LispWorks ORB or KnowledgeWorks from a secondary rpm file you
may see a message similar to this:

11 Troubleshooting, Patches and Reporting Bugs

62

rpm --install tmp/lispworks-clim-8.1-1.i386.rpm
Environment variable RPM_INSTALL_PREFIX not set, setting it to /usr
LispWorks installation not found in /usr.
error: %pre(lispworks-clim-8.1-1) scriptlet failed, exit status 1
error: install: %pre scriptlet failed (2), skipping lispworks-clim-8.1-1
#

This is only a problem when LispWorks itself was installed in a non-default location (that is, using the --prefix RPM
option). You would then want to supply that same --prefix value when installing the secondary rpm. A bug in RPM means
that a required environment variable RPM_INSTALL_PREFIX is not set automatically to the supplied value. We have seen
this bug in RPM version 4.2, as distributed with Red Hat 8 and 9.

The workaround is to set this environment variable explicitly before installing the secondary rpm. For example, if LispWorks
was installed like this:

rpm --install --prefix /usr/lisp lispworks-8.1-1.i386.rpm

then you would add CLIM like this (in C shell):

setenv RPM_INSTALL_PREFIX /usr/lisp
rpm --install --prefix /usr/lisp lispworks-clim-8.1-1.i386.rpm

11.4.3 Using multiple versions of Motif on Linux

The version of Open Motif required by LispWorks 8.1 with the Motif GUI may not be compatible with other applications
(including LispWorks 4.2). It is however compatible with LispWorks 4.3 to LispWorks 8.0, so you for example you should be
able to run LispWorks 8.1 and LispWorks 8.0 simultaneously with either Open Motif installed.

While it is not supported for LispWorks 5.1 and later versions, you can still use Lesstif for LispWorks 5.0 and earlier - see the
Installation Guide for that version for details.

You may wish to maintain multiple versions of the Motif/Lesstif libraries in order to run various applications simultaneously.
However, because the filenames of the libraries can conflict, this can only be done by installing libraries in non-standard
locations.

When a library has been installed in a non-standard location, you can set the environment variable LD_LIBRARY_PATH to
allow an application to find that library. Specifically, if <motiflibdir> denotes the directory containing the Motif 2.2 or 2.3
file libXm.so then set LD_LIBRARY_PATH to include <motiflibdir>.

Note: to find out which version of libXm your LispWorks 8.1 image is actually using, look in the bug form. See 11.9.3
Generate a bug report template for instructions on generating the bug form.

11.5 Troubleshooting on x86/x64 Solaris

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for x86/x64 Solaris.

See also 12.17.1 Problems with CAPI on GTK+ and 11.7 Troubleshooting on X11/Motif.

11.5.1 GTK+ version

GTK+ 3 (version 3.24 or higher) or GTK+ 2 (version 2.4 or higher) is required to run the LispWorks image as distributed.

11 Troubleshooting, Patches and Reporting Bugs

63

11.6 Troubleshooting on FreeBSD

This section describes some of the most common problems that can occur during installation or configuration of LispWorks
for FreeBSD.

See also 11.7 Troubleshooting on X11/Motif below for issues specific to X11/Motif.

11.7 Troubleshooting on X11/Motif

This section describes some of the most common problems that can occur using the LispWorks X11/Motif GUI, which is
available on Linux, FreeBSD and macOS.

11.7.1 Problems with the X server

Running under X11/Motif, LispWorks may print a message saying that it is unable to connect to the X server. Check that the
server is running, and that the machine the image is running on is authorized to connect to it. (See the manual entry for
command xhost(1).)

On macOS, if you attempt to start the LispWorks X11/Motif GUI in Terminal.app, an error message
Failed to open display NIL is printed. Instead, run LispWorks in X11.app.

11.7.2 Problems with fonts on Motif

LispWorks may print a message saying that it is unable to open a font and is using a default instead. The environment will
still run but it may not always use the right font.

LispWorks comes configured with the fonts most commonly found with the target machine type. However the fonts supplied
vary between implementations and installations. The fonts available on a particular server can be determined by using the
xlsfonts(1) command. Fonts are chosen based on the X11 resources. See 11.7.6 X11/Motif resources for more
information.

It may be necessary to change the fonts used by LispWorks.

11.7.3 Problems with colors

Running under X11, on starting up the environment, or any tool within it, LispWorks may print a message saying that a
particular color could not be allocated.

This problem can occur if your X color map is full. If this is the case, LispWorks cannot allocate all the colors that are
specified in the X11 resources.

This may happen if you have many different colors on your screen, for instance when displaying a picture in the root window
of your display.

Colors are chosen based on the X11 resources. See 11.7.6 X11/Motif resources for more information.

To remove the problem, you can then change the resources (for example, by editing the file mentioned in 11.7.6 X11/Motif
resources) to reduce the number of colors LispWorks allocates.

11.7.4 Motif mnemonics and Alt

Mnemonic processing on Motif always uses mod1, so we disable mnemonics if that is Lisp's Meta modifier to allow the
Emacs-style editor to work. (The accelerator code uses the same keyboard mapping check as the mnemonics so Alt

accelerators would also get disabled if you had them.)

11 Troubleshooting, Patches and Reporting Bugs

64

11.7.5 Non-standard X11/Motif key bindings

On X11/Motif, if you want Emacs-style keys Ctrl-n, Ctrl-p in LispWorks list panels such as the Editor's buffers view,
add the following to the X11 resources (see 11.7.6 X11/Motif resources):

!
! Enable Ctrl-n, Ctrl-p in list panels
Lispworks*XmList.translations: #override\n\
 Ctrl<Key>p : ListPrevItem()\n\
 Ctrl<Key>n : ListNextItem()
!

11.7.6 X11/Motif resources

When using X11/Motif, LispWorks reads X11 resources in the normal way, using the application class Lispworks. The file
app-defaults/Lispworks is used to supply fallback resources. You can copy parts of this file to ~/Lispworks or some
other configuration-specific location if you wish to change these defaults, and similarly for app-defaults/GcMonitor.

11.7.7 Motif installation on macOS

When attempting to starting the LispWorks X11/Motif GUI when the required version of Motif is not installed, LispWorks
prints the error message:

Error: Could not register handle for external module X-UTILITIES::CAPIX11:
dyld: /Applications/LispWorks 8.1/lispworks-8-1-0-macos64-universal-gtk can't open library: /usr/lo
cal/lib/libXm.4.dylib (No such file or directory, errno = 2)
.

Ensure you install Motif as described in 2.4.8.2 The X11 GTK+ and Motif GUIs. Restart X11.app and LispWorks after
installation of Motif.

11.8 Updating with patches

We sometimes issue patches for LispWorks by email or download.

11.8.1 Extracting simple patches

Save the email attachment to your disk.

See 11.8.3.2 Private patches below about location of your private patches.

11.8.2 If you cannot receive email

If your site has neither email nor ftp access, and you want to receive patches, you should contact Lisp Support to discuss a
suitable medium for their transmission.

11.8.3 Different types of patch

There are two types of patch sent out by Lisp Support, and they must be dealt with in different ways.

11 Troubleshooting, Patches and Reporting Bugs

65

11.8.3.1 Public patches

Public patches are general patches made available to all LispWorks customers. These are typically released in bundles of
multiple different patch files; each file has a number as its name. For example:

patches\system\0001\0001.ofasl (for x86 Windows)
patches/system/0001/0001.ufasl (for x86 Linux)
patches/system/0001/0001.sfasl (for x86 Solaris)
patches/system/0001/0001.ffasl (for x86 FreeBSD)
patches/system/0001/0001.rfasl (for 32-bit ARM Linux and Android)
patches/system\0001\0001.64ofasl (for x64 Windows)
patches/system/0001/0001.64ufasl (for amd64 Linux)
patches/system/0001/0001.64xfasl (for Intel Macintosh)
patches/system/0001/0001.64yfasl (for Apple silicon Macintosh and iOS Simulator)
patches/system/0001/0001.64sfasl (for amd64 Solaris)
patches/system/0001/0001.64ffasl (for amd64 FreeBSD)
patches/system/0001/0001.64rfasl (for 64-bit ARM Linux and iOS)
patches/system/0001/0001.64xcfasl (for 64-bit iOS Simulator)

On receipt of a new patch bundle your system manager should update each local installation according to the installation
instructions supplied with the patch bundle. This will add files to the patches subdirectory and increment the version number
displayed by LispWorks.

You should consider saving a new image with the latest patches pre-loaded, as described in 8.4 Saving and testing the
configured image (macOS), 9.4 Saving and testing the configured image (Windows) or 10.4 Saving and testing the
configured image (Linux, x86/x64 Solaris or FreeBSD).

11.8.3.2 Private patches

LispWorks patches are generally released in cumulative bundles. Occasionally Lisp Support may send you individual patch
binaries named for example my-patch to address a problem or implement a new feature in advance of bundled ('public')
patch releases. Such patches have real names, rather than numbers, and must be loaded once they have been saved to disk.
You will need to ensure that LispWorks will load your private patches on startup, after public patches have been loaded.

Private patch loading is controlled by the file:

lib/8-1-0-0/private-patches/load.lisp

private-patches/ is the default location for private patches, and patch loading instructions sent to you will assume this
location. Therefore, on receipt of a private patch my-patch.ufasl, the simplest approach is to place it here. For example,
on macOS:

<install>/LispWorks 8.1 (64-bit)/Library/lib/8-1-0-0/private-patches/my-patch.64xfasl

On Windows (but see note below about the Install Private Patches... command):

<install>lib\8-1-0-0\private-patches\my-patch.ofasl

On Linux:

<install>/lib/8-1-0-0/private-patches/my-patch.ufasl

You will receive a Lisp form needed to load such a patch, such as:

(LOAD-ONE-PRIVATE-PATCH "my-patch" :SYSTEM)

11 Troubleshooting, Patches and Reporting Bugs

66

This form should be added to the flet form in the file:

private-patches/load.lisp

immediately after the commented example there. load-all-patches loads this file, and hence all the private patches listed
therein.

You may choose to save a reconfigured image with the new patch loaded - for details see the instructions in 8.4 Saving and
testing the configured image (macOS), 9.4 Saving and testing the configured image (Windows), or 10.4 Saving and
testing the configured image (Linux, x86/x64 Solaris or FreeBSD). You can alternatively choose to load the patch file on
startup. The option you choose will depend on how many people at your site will need access to the new patch, and how
many will need access to an image without the patch loaded.

Note: On Windows, the correct way to install private patches is using the menu item Help > Install Private Patches.... Select
the private patch file with the Add button and edit the private-patches/load.lisp in the lower pane to include the
loading form supplied by Lisp Support immediately after the commented example there. Then click Save Changes, which
will run a helper application that interacts with the Windows User Access Control mechanism to allow you to write the files
into the protected Program Files folder.

11.9 Reporting bugs

If you discover a bug, in either the software or the documentation, you can submit a bug report by any of the following
routes.

• email

• fax

• paper mail (post)

• telephone

The addresses are listed in 11.9.8 Send the bug report. Please note that we much prefer email.

11.9.1 Check for existing fixes

Before reporting a bug, please ensure that you have the latest patches installed and loaded. Visit
www.lispworks.com/downloads/patch-selection.html for the latest patch release.

If the bug persists, check the Lisp Knowledgebase at www.lispworks.com/support/ for information about the problem - we
may already have fixed it or found workarounds.

If you need informal advice or tips, try joining the LispWorks users' mailing list. Details are at
www.lispworks.com/support/lisp-hug.html.

11.9.2 Performance Issues

If the problem is poor performance, you should use room, extended-time and profile to check what actually happens.
See the LispWorks® User Guide and Reference Manual for details of these diagnostic functions and macros.

If this does not help you to resolve the problem, submit a report to Lisp Support (see next section) and attach the output of the
diagnostics.

11 Troubleshooting, Patches and Reporting Bugs

67

http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm
http://www.lispworks.com/downloads/patch-selection.html
http://www.lispworks.com/support/
http://www.lispworks.com/support/lisp-hug.html
http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm

11.9.3 Generate a bug report template

Whatever method you want to use to contact us, choose Help > Report Bug from any tool, or use the command
Meta+X Report Bug, or at a Lisp prompt, use :bug-form, for example:

:bug-form "foo is broken" :filename "bug-report-about-foo.txt"

All three methods produce a report template you can fill in. In the GUI environment we prefer you use the Report Bug
command - do this from within the debugger if an error has been signalled.

The bug report template captures details of the Operating System and Lisp you are running, as well as a stack backtrace if
your Lisp is in the debugger. There may be delays if you do not provide this essential information.

If the issue you are reporting does not signal an error, or for some other reason you are not able to supply a backtrace, we still
want to see the bug report template generated from the relevant LispWorks image.

11.9.4 Add details to your bug report

Under 'Urgency' tell us how urgent the issue is for you. We classify reports as follows:

ASAP A bug or missing feature that is stopping progress. Probably needs a private patch, possibly
under a support contract, unless a workaround can be found.

Current Release Either a fix in the next patch bundle or as a private patch, possibly under a support contract.

Next Release A fix would be nice in the next minor release.

Future Release An item for our wishlist.

None Probably not a bug or feature request.

Tell us if the bug is repeatable. Add instructions on how to reproduce it to the 'Description' field of the bug report form.

Include any other information you think might be relevant. This might be your code which triggers the bug. In this case,
please send us a self-contained piece of code which demonstrates the problem (this is much more useful than code
fragments).

Include the output of the Lisp image. In general it is not useful to edit the output, so please send it as-is. Where output files
are very large (> 2 MB) and repetitive, the first and last 200 lines might be adequate.

If the problem depends on a source or resource file, please include that file with the bug report.

If the bug report falls into one of the categories below, please also include the results of a backtrace after carrying out the
extra steps requested:

• If the problem seems to be compiler-related, set *compiler-break-on-error* to t, and try again.

• If the problem seems to be related to error or conditions or related functionality, trace error and
conditions:coerce-to-condition, and try again.

• If the problem is in the LispWorks IDE, and you are receiving too many notifiers, set
dbg:*full-windowing-debugging* to nil and try again. This will cause the console version of debugger to be
used instead.

• If the problem occurs when compiling or loading a large system, call (toggle-source-debugging nil) and try
again.

• If you ever receive any unexpected terminal output starting with the characters <**>, please send all of the
output—however much there is of it.

11 Troubleshooting, Patches and Reporting Bugs

68

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

Note: terminal output is that written to *terminal-io*. Normally this is not visible when running the macOS native
GUI or the Windows GUI, though it is displayed in a Terminal.app or MS-DOS window if necessary.

11.9.5 Reporting crashes

Very occasionally, there are circumstances where it is not possible to generate a bug report form from the running Lisp which
has the bug. For example, a delivered image may lack the debugger, or the bug may cause lisp to crash completely. In such
circumstances:

1. It is still useful for us to see a bug report form from your lisp image so that we can see your system details. Generate the
form before your code is loaded or a broken call is made, and attach it to your report.

2. Create a file init.lisp which loads your code that leads to the crash.

3. Run LispWorks with init.lisp as the initialization file and with output redirected to a file. For example, on macOS:

% "/Applications/LispWorks 8.1 (64-bit)/LispWorks (64-bit).app/Contents/MacOS/lispworks-8-1-0-
macos64-universal" -init init.lisp > lw.out

where % denotes a Unix shell prompt.

On Windows:

C:\> "Program Files\LispWorks\lispworks-8-1-0-x86-win32.exe" -init init.lisp > lw.out

where C:\> denotes the prompt in a MS-DOS command window.

On Linux:

% /usr/bin/lispworks-8-1-0-x86-linux -init init.lisp > lw.out

where % denotes a Unix shell prompt.

4. Attach the lw.out file to your report. In general it is not useful to edit the output of your Lisp image, so please send it
as-is. Where output files are very large (> 2 MB) and repetitive, the first and last 200 lines might be adequate.

11.9.6 Log Files

If your application writes a log file, add this to your report. If your application does not write a log file, consider adding it,
since a log is always useful. The log should record what the program is doing, and include the output of (room) periodically,
say every five minutes.

You can make the application write a bug form to a log file automatically by making your error handlers call
dbg:log-bug-form.

11.9.7 Reporting bugs in delivered images

Some delivered executables lack the debugger. It is still useful for us to see a bug report template from your Lisp image that
was used to build the delivered executable. If possible, load your code and call (require "delivery") then generate the
template.

For bugs in delivered LispWorks images, the best approach is to start with a very simple call to deliver, at level 0 and with
the minimum of delivery keywords (:interface :capi and :multiprocessing t at most). Then deliver at increasingly
severe levels. Add delivery keywords to address specific problems you find (see the Delivery User Guide.for details.
However, please note that you are not expected to need to add more than 6 or so delivery keywords: do contact us if you are
adding more than this.)

11 Troubleshooting, Patches and Reporting Bugs

69

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

11.9.8 Send the bug report

Email is usually the best way. Send your report to:

lisp-support@lispworks.com

When we receive a bug report, we will send an automated acknowledgment, and the bug will be entered into the LispWorks
bug management system. The automated reply has a subject line containing for example:

(Lisp Support Call #12345)

Please be sure to include that cookie in the subject line of all subsequent messages concerning your report, to allow Lisp
Support to track it.

If you cannot use email, please either:

• Fax to +44 870 2206189.

• Post to Lisp Support, LispWorks Ltd, St John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, England.

• Telephone: +44 1223 421860.

Note: It is very important that you include a stack backtrace in your bug report wherever applicable. See 11.9.3 Generate a
bug report template for details. You can always get a backtrace from within the debugger by entering :bb at the debugger
prompt.

11.9.9 Sending large files

Note: Please check with Lisp Support in advance if you are intending to send very large (> 2 MB) files via email.

11.9.10 Information for Personal Edition users

We appreciate feedback from users of LispWorks Personal Edition, and often we are able to provide advice or workarounds if
you run into problems. However please bear in mind that this free product is unsupported. For informal advice and tips, try
joining the LispWorks users mailing list. Details are at www.lispworks.com/support/lisp-hug.html.

11.10 Transferring LispWorks to a different machine

This section lists the steps necessary to transfer LispWorks license to another machine.

1. Install LispWorks on your new machine.

2. Add latest patch bundle.

3. If you received private patches (named patch files, in the lib/8-1-0-0/private-patches directory) for this version
of LispWorks, move them and your private-patches/load.lisp file to the corresponding location in the new
installation.

4. Test the new installation by running LispWorks and check the patch banner in the output of Help > Report Bug. It should
be identical to the original installation. If it differs, check that the public patches have been installed and that you private
patches have been moved to the new private-patches folder along with the load.lisp file.

Please note that the LispWorks EULA restricts multiple installations so you may need to remove the original installation.
Check your license agreement if you are unsure: the text of the shrinkwrap agreement is in the file
lib/8-1-0-0/license.txt.

11 Troubleshooting, Patches and Reporting Bugs

70

http://www.lispworks.com/support/lisp-hug.html

Instructions for uninstalling LispWorks are in the per-platform chapters of this manual:

• 2.6 Uninstalling LispWorks for Macintosh

• 3.3 Uninstalling LispWorks for Windows

• 4.9 Uninstalling LispWorks for Linux

• 5.8 Uninstalling LispWorks for x86/x64 Solaris

• 6.9 Uninstalling LispWorks for FreeBSD

Some operating systems provide ways to copy software to another machine. A copied LispWorks installation will not run.
Please contact Lisp Support if you want to install your license to a copied installation of LispWorks.

11 Troubleshooting, Patches and Reporting Bugs

71

12 Release Notes

12.1 Keeping your old LispWorks installation

You can install LispWorks 8.1 in the same directory as previous versions such as LispWorks 8.0. This is because most of the
8.1 files are stored in a subdirectory called lib/8-1-0-0.

Binaries produced by cl:compile-file in previous versions of LispWorks do not load into a LispWorks 8.1 image. You
must recompile all your code with the LispWorks 8.1 compiler.

12.2 Updating your code for LispWorks 8.1

Check through these release notes for things you need to update in code that already works in LispWorks 8.0.

If you are updating code that works only in versions earlier than LispWorks 8.0, then you should also consult earlier release
notes, which are available at www.lispworks.com/documentation.

12.2.1 Conditionalizing code for different versions of LispWorks

When conditionalizing code for different versions of LispWorks, make your code work in the latest version and then
conditionalize with feature expressions if necessary, depending on which previous versions of LispWorks you want to
support.

For example, use #-lispworks7 rather than #+lispworks8. This makes it more likely that the code will work without
changes when LispWorks 9 is released in future.

Use only documented features. For an example see "Conditionalization for LispWorks versions" in the entry for
features in the LispWorks® User Guide and Reference Manual.

12.3 Platform support

12.3.1 Running on 64-bit machines

As far as we know each of the 32-bit LispWorks implementations runs correctly in the 32-bit subsystem of the corresponding
64-bit platform.

12.3.2 Code signing LispWorks images

On macOS, the LispWorks application bundle is signed in the name of LispWorks Ltd.

On Microsoft Windows, the LispWorks Personal Edition executable is signed in the name of LispWorks Ltd.

Other LispWorks editions are not signed, because of the complications around image saving and delivery that this would lead
to.

For more information, see 13.3.6 Code signing in saved images in the LispWorks® User Guide and Reference Manual.

72

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation

12.3.3 macOS universal binaries

The supplied LispWorks (64-bit) for Macintosh images are universal binaries, which run the correct native architecture on
arm64 (Apple silicon) and x86_64 (Intel) Macintosh computers by default.

A running Lisp image only supports one architecture, chosen when the image was started. On a x86_64 based Macintosh,
this is always the x86_64 architecture. On an arm64 Macintosh, a running LispWorks image can be either the native arm64
architecture or the x86_64 architecture (using Rosetta 2).

Functions such as hcl:save-image and lispworks:deliver create an image containing only the running architecture
and functions that operate on fasl files such as cl:compile-file and cl:load only support the running architecture.

To build a universal binary application from LispWorks 8.1 for Macintosh, you will need to install LispWorks on an arm64
(Apple silicon) Macintosh computer.

12.3.4 macOS images are split into two files by default

The supplied LispWorks (64-bit) for Macintosh images are split, which means that the Lisp heap is split into a separate file,
named by adding .lwheap to the name of the executable. In the appliction bundle, this is stored in the Resources directory.

In addition, the split argument to hcl:save-image and lispworks:deliver defaults to :default, which causes the
new image to be split by default on macOS.

12.4 GTK+ window system

LispWorks uses GTK+ as the default window system for CAPI and the LispWorks IDE on Linux, FreeBSD and x86/x64
Solaris. GTK+ is also supported on macOS as an alternative to Cocoa. LispWorks requires GTK+ 3 (version 3.24 or higher)
or GTK+ 2 (version 2.4 or higher).

A few known problems are documented on 12.17.1 Problems with CAPI on GTK+.

12.4.1 Using Motif instead of GTK+

Use of Motif with LispWorks on Linux, FreeBSD, x86/x64 Solaris and macOS is deprecated, but it is available by:

(require "capi-motif")

To use LispWorks 8.1 with Motif you also need Imlib2 (on Linux, FreeBSD and macOS) or Imlib (on Solaris) installed, as
described earlier in this manual.

12.4.2 X11/Motif requires Imlib2 except on Solaris

LispWorks 8.1 requires Imlib2 1.4.3 or later to use the Motif GUI on Linux, FreeBSD and macOS. Some older versions of
LispWorks required Imlib, which is a different library and is still required on Solaris.

12.5 New CAPI features

See the CAPI User Guide and Reference Manual for more details of these, unless directed otherwise. This section is not
relevant to LispWorks for Mobile Runtime.

12 Release Notes

73

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

12.5.1 Line numbers in editor-pane

The class capi:editor-pane has a new initarg :line-numbers-p to control the display of line numbers and new initargs
:line-numbers-background, :line-numbers-foreground, :line-numbers-font,
:line-numbers-wrapped-string, :line-numbers-width-string, :line-numbers-separator-thickness,
:line-numbers-separator-color, :line-numbers-separator-dash, :line-numbers-right-gap,
:line-numbers-highlight-background and :line-numbers-highlight-foreground to specify their appearance.

The new function capi:editor-pane-set-line-numbers-appearance can be used to change the appearance of the
line numbers in an existing capi:editor-pane.

The new variables capi:*editor-pane-default-line-numbers-background*,
capi:*editor-pane-default-line-numbers-foreground*,
capi:*editor-pane-default-line-numbers-font*,
capi:*editor-pane-default-line-numbers-wrapped-string*,
capi:*editor-pane-default-line-numbers-width-string*,
capi:*editor-pane-default-line-numbers-separator-thickness*,
capi:*editor-pane-default-line-numbers-separator-color*,
capi:*editor-pane-default-line-numbers-separator-dash*,
capi:*editor-pane-default-line-numbers-right-gap*,
capi:*editor-pane-default-line-numbers-highlight-background* and
capi:*editor-pane-default-line-numbers-highlight-foreground* provide initial values for the appearance of
the line numbers.

12.5.2 In-place editing for tree-view and list-panel

The new initarg :editing-callback for the class capi:collection allows in-place editing of items in a
capi:tree-view or capi:list-panel.

The new functions capi:collection-item-get-editing-string,
capi:collection-item-set-editing-string get and set the current in-place editing string.

The new function capi:collection-item-edit starts an in-place editing operation.

12.5.3 Support for GTK+ 3

The CAPI now supports GTK+ 3 if it is available. By default, LispWorks uses GTK+ 3 if available and uses GTK+ 2
otherwise. See 19.3.1 The version of GTK+ that LispWorks uses in the CAPI User Guide and Reference Manual for more
details.

12.5.4 Support for Wayland on GTK+

The CAPI now supports Wayland on GTK+ if it is available.

The new function capi:screen-display-type returns the type of display being used by a screen if you need to
distinguish between displaying on X11 or Wayland when using GTK+.

There are some differences between X11 and Wayland:

• The desktop does not allow the application to access or control the position of top level windows, but the size can still be
accessed or controlled. This affects the return values of capi:top-level-interface-geometry and the arguments
of capi:set-top-level-interface-geometry.

12 Release Notes

74

• To allow some control over positioning of non-focus windows, the functions capi:display-non-focus-message
and capi:prompt-with-list-non-focus have new keyword arguments :pointing-to-x, :pointing-to-y,
:pointing-to-width, :pointing-to-height and :position.

12.5.5 Forcing dark mode on GTK+

The new function capi:force-dark-mode can be used to tell LispWorks on GTK+ to display as if in dark or not in dark
mode.

12.5.6 Scaling graphics for high resolution monitors on Microsoft Windows

The new function win32:set-dpi-awareness allows you to control what happens with scaling when displaying on a high
resolution monitor on Microsoft Windows.

12.5.7 Determining scale factor for graphics

The new functions capi:pane-scale-factor and capi:screen-scale-factor can be used find the scale factor of a
pane or a screen.

12.5.8 Evaluating forms in a Listener

The new function capi:editor-pane-evaluate-region-in-listener evaluates a region of the buffer in a Listener.

12.5.9 Checking if an interface is currently displayed

The new functions capi:interface-displayed-p, capi:interface-fully-created-p,
capi:interface-being-created-p and capi:interface-fully-destroyed-p can be used to determine the
creation state of an capi:interface.

12.5.10 Hiding or showing scroll bars

The new function capi:simple-pane-show-scroll-bars can be used to change the visibility of the scroll bars of a
pane.

12.5.11 Blocking mouse wheel events

The new function capi:simple-pane-block-mouse-wheel can be used to block or unblock mouse wheel events for a
pane.

12.5.12 Closing all interfaces that have been created with contain

The new function capi:quit-all-contain-interfaces tries to quit (by capi:quit-interface) all interfaces that
were created using capi:contain or capi:make-container.

12.5.13 Leaving resizble gaps in a layout

The new class capi:dummy-pane can be used to leave resizble gaps between other pane in a layout.

12 Release Notes

75

12.5.14 Preventing a pane from being resized except by a layout divider

The x-ratios (or y-ratios) in a capi:grid-layout (and hence capi:row-layout or capi:column-layout) can now
contain :fixed, which allows the corresponding child pane to be resized by a divider but not when the user resizes the
layout (typically by resizing the whole window).

The new function capi:set-layout-ratios-keeping-fixed can be used to set the ratios of a capi:row-layout or
capi:column-layout keeping :fixed items.

The new function capi:set-layout-description-and-ratios can be used to simultaneously set the description and
ratios of a capi:row-layout or capi:column-layout, optionally keeping :fixed items.

12.5.15 Recording the positions of layout dividers

The new function !function!capi:grid-layout-get-sizes can be used to create a list of the sizes of the panes in a
layout with dividers, which can be recorded for future use.

12.5.16 The armed-image is now implemented for button on Cocoa

The :armed-image initarg is now implemented for the class capi:button on Cocoa, like on other platforms.

12.5.17 Displaying a level indicator on Cocoa

The class capi:slider has a new :level-indicator-style initarg, which makes itr display as a NSLevelIndicator
on Cocoa.

12.5.18 The accelerator in a menu-item on Cocoa can now specify just Control-Option

On Cocoa, the :accelerator initarg to capi:menu-item is now allowed to specify just the Control-Option modifiers,
without the Accelerator modifier. In previous releases, accelerators without the Accelerator modifier were ignored.

For example:

:accelerator "Control-Option-a"

12.5.19 Aligning the text in text-input-pane

The class capi:text-input-pane has a new initarg :alignment which controls the horizontal alignment of the text in
the pane.

12.5.20 Controlling tree-view buttons and lines on Microsoft Windows

On Microsoft Windows, the class capi:tree-view has a new initarg :has-lines, which specifies if the pane has buttons
for expanding child nodes and/or lines between nodes, and if these are present for the root nodes. This replaces the
:has-root-line initarg, which is not deprecated.

12.5.21 Column resizing improvement on Microsoft Windows

On Microsoft Windows, double clicking on the separator between columns in the header of a multi-column list-panel now
resizes the column to fit its contents. Cocoa and GTK already did this.

12 Release Notes

76

12.5.22 Horizontal scrolling for tree-view

The :horizontal-scroll initarg now works for capi:tree-view on Microsoft Windows. This has the effect of turning
off horizontal scrolling by default. In previous releases, horizontal scrolling was enabled regardless of the value of the
:horizontal-scroll initarg.

12.5.23 Controlling the color of in-place completion dialogs

The new generic functions capi:editor-pane-in-place-style, capi:editor-pane-arglist-displayer-style
and capi:text-input-pane-in-place-style can be specialized for subclasses of capi:editor-pane and
capi:text-input-pane to control the color and font used by in-place completion dialogs and the arglist displayer.

12.5.24 Clipboard and selection functions return a second value

The functions capi:clipboard, capi:clipboard-empty, capi:selection and capi:selection-empty are now
documented to return a second value. They have always done this, but it was not documented.

12.6 New graphics ports features

Unless otherwise stated, for details see the Graphics Ports chapters in the CAPI User Guide and Reference Manual. This
section is not relevant to LispWorks for Mobile Runtime.

12.6.1 Newly documented initargs for external-image

The initargs :data, :transparent-color-index and :type are now documented for the class
graphics-ports:external-image, allowing external images to be created from a vector of bytes.

12.6.2 gp:make-image-from-port should not be used with capi:output-pane

We recommend not using gp:make-image-from-port with a capi:output-pane, because it might be impossible to get
the correct pixel information. On macOS, it will signal an error. Only use gp:make-image-from-port with a
gp:pixmap-port.

12.7 New color system features

For details see 15 The Color System in the CAPI User Guide and Reference Manual. This section is not relevant to
LispWorks for Mobile Runtime.

12.7.1 Colors that vary between light and dark mode

The new function color:create-light-dark-switchable-color creates a "switchable-color" object that
automatically switches between dark mode and light mode when used as a color by CAPI or Graphics Ports.

The new functions color:light-dark-switchable-color-light-color and
color:light-dark-switchable-color-dark-color return the corresponding colors of objects created by
color:create-light-dark-switchable-color and the new function
color:light-dark-switchable-color-set-colors can be used to change them.

The new function color:light-dark-switchable-color-p is a predicate for objects created by
color:create-light-dark-switchable-color.

12 Release Notes

77

12.8 More new features

For details of these, see the documentation in the LispWorks® User Guide and Reference Manual, unless a manual is
referenced explicitly.

12.8.1 Use of setf function names in map-environment and augment-environment

When a setf function is in an environment, the name passed to function in system:map-environment is now a setf
function name. In previous releases, it was a symbol in the setf package that is used internally to name the setf function.

The items in the function argument to hcl:augment-environment can now be symbols or setf function names. In
previous releases, they had to be symbols.

12.8.2 Printing potential numbers without escapes

The new variable hcl:*print-escape-potential-numbers* controls whether the Lisp printer escapes symbols whose
names have the syntax of a potential number but do not actually have the syntax of a number. In previous releases, all
potential numbers were printed with escapes.

12.8.3 Concatenating a long list of sequences

The new function hcl:concatenate* can be used to concatenate a list of sequences, to avoid using cl:apply with
cl:concatenate. which risks breaching the limit imposed by cl:call-arguments-limit.

12.8.4 Recognizing case in characters that are not base-char

The Common Lisp functions such as cl:char-upcase now recognize case in characters that are not cl:base-char (those
with code larger than 255). The case is based on the foldings as defined in Unicode 15.0.0 (the simple folding), provided
they can be made to obey the ANSI Common Lisp standard's requirement that cased characters are always in one-to-one pairs
of upper and lower characters. See 26.4 Characters with case in the LispWorks® User Guide and Reference Manual for more
details.

This change affects all the case-insensitive string and character comparison, case modification and predicate functions, as
well as reading and printing of symbols. It also affects LispWorks functions that are not Common Lisp functions, for
example regular expression matching and Editor commands that upcase/downcase.

For case-insensitive comparison functions, characters are now folded according to the Unicode specification, which means
that most characters are now downcased, but some are upcased. In previous releases of LispWorks, characters were always
upcased for case-insensitive comparison functions. That does not change the resuls of equality functions, but it does change
the results of ordering functions (such as cl:string-lessp and cl:char-greaterp).

The functions cl:nstring-upcase and cl:nstring-capitalize may now signal an error if given a cl:base-string
containing with code 223 ("small sharp s") or code 255 ("small y with diaeresis") because the corresponding uppercase
characters are not of type cl:base-char. The non-destructive functions cl:string-upcase and
cl:string-capitalize create a lispworks:text-string in this case.

12.8.5 The compiler can now optimize based on free type declarations

The compiler can now optimize code based on free cl:type declarations (declarations that do not appear at the start of the
body of the special form that establishes the variable binding). In previous releases, it could only optimize code based on
bound cl:type declarations.

12 Release Notes

78

http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_concat.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_call_a.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_char_u.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stgeq_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_chareq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_s.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_stg_up.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm

12.8.6 The compiler can now optimize using symbol macro type declarations

The compiler can now optimize code based on cl:type declarations for symbol macros, such as those defined by
cl:define-symbol-macro, cl:symbol-macrolet, cl:with-slots and cl:with-accessors. In previous releases,
declarations for symbol macros were ignored in most cases.

This change could lead to code being incorrectly optimized if you have an incorrect declaration. You can find incorrect
cl:type declarations by compiling code with:the following cl:optimize declaration:

(optimize (safety 3) (debug 3))

12.8.7 The compiler now warns about unreferenced uninterned symbols

The compiler now warns about uninterned symbols that are not referenced and do not have an cl:ignore declaration.
Likewise, it warns about uninterned symbols that have an cl:ignore declaration but are referenced. Previous versions of
only warned about interned symbols in these cases.

12.8.8 Removing a user-preference value

The new function lispworks:remove-user-preference removes any persistent value in the user's registry that is
associated with the accessor lispworks:user-preference.

12.8.9 The current directory in a shell command

The function system:open-pipe now has a current-directory keyword argument to control the current directory for the
command, which defaults to the current directory of the LispWorks process. In previous releases on Microsoft Windows, the
current directory defaulted to the lispworks:pathname-location of the lispworks:current-pathname and there
was no way to change it.

The functions system:call-system and system:call-system-showing-output now use the value of the current-
directory keyword on all platforms, which defaults to the current directory of the LispWorks process. In previous releases,
this keyword was only used on Microsoft Windows and defaulted to the lispworks:pathname-location of the
lispworks:current-pathname.

The function system:run-shell-command now has a current-directory keyword argument on all platforms to control the
current directory for the command, which defaults to the current directory of the LispWorks process. In previous releases,
this keyword was only allowed on Microsoft Windows and defaulted to the lispworks:pathname-location of the
lispworks:current-pathname.

In practice, the default is only different when loading or compiling a file.

12.8.10 New :external-format argument to call-system-showing-output

The system:call-system-showing-output now has a external-format keyword argument to control the external format
used when reading the output of the command.

12.8.11 hcl:create-universal-binary can create a shared library

The function hcl:create-universal-binary has new keyword arguments :image-type and :output-stream which
allow it to create a shared library and redirect displayed messages.

12 Release Notes

79

http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defi_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_symbol.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_acce.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_type.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_ignore.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_ignore.htm

12.8.12 compile-file with non-nil :load signals an error for compilation failure

The function cl:compile-file now signals an error at the end of compilation if an error occurs during compilation and the
load keyword argument is non-nil. Previous versions of LispWorks would return nil.

12.8.13 Warnings for uninterned variables that are bound but not referenced

The compiler now signals a "bound but not referenced" warning for unreferenced variables that are uninterned symbols. In
previous versions, the warning was only signaled for interned symbols.

12.8.14 New copy-times-p and copy-permissions-p arguments copy-file

The function lispworks:copy-file has new keyword arguments :copy-times-p and :copy-permissions-p to
control copying the times and permissions of the file to the new file.

12.8.15 Detecting changes in a file system directory

The new function win32:monitor-directory-changes can be used to detect changes in a file system directory.

12.8.16 Additional options for encoding and decoding external formats

The functions external-format:decode-external-string external-format:encode-lisp-string have a new
into keyword argument that allows writing into an existing string/vector or calling a function with each new element of the
result. In addition, the first argument of external-format:decode-external-string can be a function that generates
the bytes instead of being a vector.

12.8.17 Miscellaneous changes for SSL connections

The new function comm:ssl-connection-implementation returns the implementation name of an SSL connection.

The new reader comm:ssl-condition-ssl-code returns the associated SSL error code for an instance of
comm:ssl-condition. The values for the Apple implementation are documented by the new constants such as
comm:apple-err-ssl-protocol.

For the Apple implementation, function comm:ssl-connection-verify may also return the results of the Apple trust
callback of the context used to create ssl-connection, See the discussion of apple-trust-callback in the documentation for
comm:create-ssl-client-context and comm:create-ssl-server-context.

The new condition class comm:ssl-version-or-cipher-mismatch is signaled for SSL errors that are the result of
problems with the cipher suite of key exchange during establishing an SSL connection.

12.8.18 handshake-timeout for open-tcp-stream-using-java

The function comm:open-tcp-stream-using-java has a newly documented handshake-timeout keyword argument. This
has always be supported but not documented until now.

12.8.19 Performing a shutdown on an async-io-state

The new function comm:async-io-state-shutdown performs a shutdown on the socket associated with an
comm:async-io-state.

12 Release Notes

80

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

12.8.20 Waiting for asynchronous input to be available

The new function comm:async-io-state-wait-for-input can be used to wait for input to be available from an
comm:async-io-state. A callback is called when input becomes available.

12.8.21 Detecting if a wait-state-collection is alive

The new function comm:wait-state-collection-alive-p can be used to detect whether a
comm:wait-state-collection is alive and can be used.

12.8.22 Using static buffers with buffered-stream

The class stream:buffered-stream has a new initarg :static-buffers that allows the stream's buffers to allocated as
static so they can be passed directly to foreign functions.

12.8.23 The :gb18030 external format is now GB18030-2022

The :gb18030 external format now converts to/from GB18030-2022. In previous releases, it converted to/from GB18030-
2005.

12.8.24 The :us-ascii external format

The external format :us-ascii has been added as a synonym for :ascii, as the name preferred by IANA.

12.8.25 Incomplete utf-8 input now signals an error

The external format :utf-8, now signals an error if the end of input is reached within the middle of a sequence of bytes.

12.8.26 Accessing fields in the Java interface without specifying a class name

The new accessor lw-ji:jobject-field-value can be used to access a non-static field in a Java object using the name of
the field, for example "separator". This contrasts with functions such as lw-ji:read-java-field, which require the
full field name including the package and class.

12.8.27 Improved performance of bignum division on arm64 Linux and Apple Silicon

The performance of bignum division (and cl:floor, cl:mod etc) has been improved on arm64 Linux and Apple Silicon
hardware.

12.8.28 Consistency of numeric operations on floats

The exponential, logarithmic, and trigonometric functions such as cl:sin are now implemented using the standard C library
on all platforms. This ensures that they return consistent results on all platforms for cases such as (sin pi) that have
mathematically imprecise values due to floating point inaccuracies.

In previous releases, these functions were implemented using hardware instructions on x86 and x86_64 platforms, which
causes them to return different values compared to other implementations.

12 Release Notes

81

http://www.lispworks.com/documentation/HyperSpec/Body/f_floorc.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_mod.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_sin_c.htm

12.9 IDE changes

This section describes new features and other changes in the LispWorks Integrated Development Environment (IDE).

See the LispWorks IDE User Guide for details of the features mentioned. This section is not relevant to LispWorks for Mobile
Runtime.

12.9.1 In-place editing of values in the Inspector

You can now edit the value of a slot in the Inspector's attributes and values list by clicking within the text of the value while
the item is selected.

12.9.2 Displaying line numbers in the Editor

The Editor can now optionally display line numbers in the Text view. The new command Toggle Showing Line Numbers
toggles showing line numbers in the current window, or it can be set via Preferences... > Editor > General.

12.9.3 Highlighting forms within backquote from the debugger

The Debugger can now directly highlight an erroneous subform that is within a backquoted form (using an Editor window).
In previous releases, it prompts you to insert the expanded backquote form.

12.9.4 Editor Find Definitions view has a dropdown list

The Find Definitions view in the Editor now has a dropdown list for the Name pane that allows you to select previously
entered names.

12.9.5 Double-click to inspect values in the Listener

Double-clicking on an evaluation result in the Listener now opens the Inspector to show that value. You can turn this off via
Preferences... > Listener > Listener.

12.9.6 Full text search and searching for complete Lisp symbols in the documentation

The Search dialog raised by the Help > Search... and Help > On Symbol... menu items now has an option to search for a
complete Lisp Symbol, in addition to the existing Whole Word and Partial Search options.

There is also a Full Text option to search the full text of the manual, in addition to the existing Index or Contents options.

12.9.7 Improved error notification on macOS

Errors during certain operations on macOS will now raise the Notifier window asynchronously, with a snapshot of the
backtrace. This is due to limitations in Cocoa and currently applies to errors while drawing or resizing a pane.

12.9.8 Choosing light or dark mode on macOS

You can now override the system setting for Light or Dark mode on macOS by changing the Appearance in Preferences... >
Environment > General.

12 Release Notes

82

12.10 Editor changes

This section describes new features and other changes in the LispWorks editor, which is used in the Editor tool of the
LispWorks IDE.

See the Editor User Guide for details of these changes. This section is not relevant to LispWorks for Mobile Runtime.

12.10.1 Smooth scrolling in the editor

The editor now allows vertical scrolling to be aligned on arbitrary pixels. This happens when scrolling using the scroll bar,
mouse wheel or a trackpad. In previous releases, scrolling was always aligned on lines of text.

12.10.2 Displaying line numbers

The editor can now optionally display line numbers. The new command Toggle Showing Line Numbers toggles showing
line numbers in the current window, or it can be set via the the LispWorks IDE Preferences dialog.

12.10.3 The Emacs Command editor command

There is a newly documented editor command Emacs Command that is available in macOS, Microsoft Windows and
KDE/Gnome emulation to allow use of any key binding that would be available in Emacs emulation. It is bound to
Ctrl+Shift+E on macOS and Ctrl+E on Microsoft Windows and KDE/Gnome.

12.10.4 New command Kill Some Buffers

A new editor command Kill Some Buffers deletes buffers selected from a list.

12.10.5 New editor commands to evaluate forms

The new editor commands Evaluate Nearest Form and Evaluate Nearest Form In Listener can be used to evaluate the
form nearest to the current point.

The new editor commands Evaluate Next Form and Evaluate Next Form In Listener can be used to evaluate the form
following the current point.

12.10.6 Evaluation in Listener commands do not usually insert text now

The editor commands Evaluate Defun In Listener, Evaluate Last Form In Listener and Evaluate Region In Listener
now evaluate without inserting the text of the form into the Listener by default. The text is still inserted when a prefix
argument is given, to allow you to make changes before evaluation.

12.10.7 Using the Listener to load a file

The new editor command Load File In Listener can be used (instead of Load File) to load a file in a Listener window.

12.10.8 Uncommenting (removing comment markers)

The editor command Comment Region now uncomments (removes comment markers) when given a negative prefix
argument or the default prefix argument.

The new editor command Uncomment Multi Line Comment can be used to remove multi line comment syntax (#|...|# in

12 Release Notes

83

Lisp mode).

12.10.9 Avoiding user interactions when calling editor functions

The new macro editor:with-running-operation can be used to avoid interactions with the user when calling editor
functions that open files. This is useful when using the editor to perform batch text operations.

12.11 Foreign Language interface changes

See the Foreign Language Interface User Guide and Reference Manual for details of these changes.

12.11.1 Boolean types

The FLI type :boolean now signals a warning if its encapsulates argument is omitted because doing that causes subtle bugs
if the API expects a different size of integer.

The new FLI types :bool and :int-boolean are usually a better choice than :boolean.

12.11.2 fli:*locale-external-formats* is not used at all now

The variable fli:*locale-external-formats* is no longer used by fli:set-locale on any platform. This change
actually occurred in LispWorks 8.0 but was not documented.

12.11.3 Checking if a foreign symbol is defined

The new function fli:foreign-symbol-defined-p can be used to determine whether a specified foreign symbol is
defined.

12.12 Objective-C changes

This section applies only to Macintosh and iOS platforms. See the LispWorks Objective-C and Cocoa Interface User Guide
and Reference Manual for details.

12.12.1 NSString conversion functions

The newly documented functions objc:ns-string-to-string and objc:string-to-ns-string can be used to do an
explicit conversion between Objective-C NSString and Lisp strings in cases where the automatic conversions are not
possible.

These functions were defined in previous versions of LispWorks but were not documented until LispWorks 8.1.

12.12.2 Handling typedefs

The newly documented macro objc:define-objc-typedef can be used to define an Objective-C typedef.

12.12.3 The NSCopying protocol

The class objc:standard-objc-object now implements the NSCopying protocol method copyWithZone: to call
objc:objc-object-copied. This implementation of copyWithZone: assumes that the the superclass also implements
NSCopying to copy all of its instance variables.

12 Release Notes

84

12.12.4 Calling variadic methods with objc:invoke

The functions objc:invoke, objc:invoke and objc:invoke-into can now be used to call variadic methods by
specifying the argument types and a value for the :variadic-num-of-fixed keyword.

12.13 Common SQL changes

12.13.1 New odbc-keywords keyword argument for connect

The function sql:connect has a new keyword argument :odbc-keywords that controls specific aspects of the connection.
See 23.2.5.3 ODBC keywords in the LispWorks® User Guide and Reference Manual for details.

12.14 CLOS/MOP changes

12.14.1 class-prototype for built-in-class

The MOP function hcl:class-prototype is now implemented for the class cl:built-in-class. An error is signaled
if the class has no instances of its own, for example cl:integer whose instances are either cl:fixnum or cl:bignum.

12.14.2 short-float is no longer a class on 64-bit

The class named cl:short-float has been removed from 64-bit LispWorks because the type cl:short-float is an alias
for cl:single-float in 64-bit LispWorks.

12.15 Other changes

12.15.1 Changes in *features*

:lispworks8.1 is present, :lispworks8.0 is not.

For a full description including information about the features used to distinguish new LispWorks implementations and
platforms, see the entry for *features* in the LispWorks® User Guide and Reference Manual.

12.15.2 ASDF version

The supplied ASDF is now version 3.3.7.

Note that this version of ASDF no longer exports uiop:defun* and uiop:defgeneric*. If you are using an older
version of the serapeum library (from Quicklisp or github) that uses uiop:defun* then will need to update your copy.

12.15.3 Handling of proclaim as a top level form during file compilation

When the function cl:proclaim is used as a top level form during file compilation, it is now only evaluated at load time by
default. In previous releases, it would be evaluated at compile time as well as load time, except for cl:proclaim
cl:optimize forms which would only be evaluated at compile time. See the function
lispworks:set-compile-file-proclaim-handling for more details.

12 Release Notes

85

http://www.lispworks.com/documentation/lw70/MOP/mop/dictionary.html#class-
http://www.lispworks.com/documentation/HyperSpec/Body/t_built_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_bignum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_procla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_procla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/d_optimi.htm

12.15.4 Using :displaced-index-offset without :displaced-to signals an error

The functions cl:make-array and cl:adjust-array now signal an error if :displaced-index-offset is supplied
and :displaced-to is not supplied. The ANSI CL specification prohibits this combination and in previous releases it
silently did nothing at all.

12.15.5 logical-pathnames no longer allow incorrect component values

An error is signaled now for incorrect component values in a cl:logical-pathname.

For example, this now signals an error because :unspecific cannot be used in pathname type of a
cl:logical-pathname:

(setf (logical-pathname-translations "TMP") '(("**;*" "/tmp/**/*")))
(merge-pathnames "TMP:FOO" (make-pathname :type :unspecific))

Likewise, cases with an empty string signal an error:

(setf (logical-pathname-translations "TMP") '(("**;*" "/tmp/**/*")))
(make-pathname :host "TMP" :type "")
(pathname #P"TMP:FOO.")
(make-pathname :host "TMP" :name "")
(make-pathname :host "TMP" :directory "")
(pathname #P"TMP:;;FOO")
(pathname #P"TMP:FOO;;")
(pathname #P"TMP:FOO;;BAR;")
(make-pathname :host "TMP" :directory '(:absolute ""))
(make-pathname :host "TMP" :directory '(:relative ""))

12.15.6 Loading old data files

Binary files created with hcl:dump-forms-to-file or hcl:with-output-to-fasl-file in LispWorks 8.0,
LispWorks 7.1, LispWorks 7.0, LispWorks 6.1, LispWorks 6.0, LispWorks 5.x, LispWorks 4.4 or LispWorks 4.3 can be
loaded into LispWorks 8.1 using system:load-data-file.

12.16 Documentation changes

12.16.1 New self-contained examples

These examples are entirely new:

(example-edit-file "capi/layouts/set-layout-ratios-keeping-fixed")

12.16.2 Removed self-contained examples

(example-edit-file "capi/graphics/image-access")
(example-edit-file "capi/graphics/image-access-bgra")

12 Release Notes

86

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_adjust.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_logica.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_logica.htm

12.17 Known Problems

12.17.1 Problems with CAPI on GTK+

The capi:interface-override-cursor is ignored by capi:text-input-pane which always displays its usual I-
beam cursor. This is due to a limitation in the way that text-input-pane is implemented by GTK.

The normal navigation gesture (Tab) is treated as an editor command in capi:editor-pane and IDE tools based on this.
Instead, use Ctrl+Tab to navigate from an editor pane in GTK+.

In GTK+ versions older than 2.12, the value of capi:option-pane enabled-positions has no effect on the visible
representation of the items. In later versions of GTK+, the disabled items are grayed out.

In GTK+ versions older than 2.12, capi:display-tooltip does not work. In version 2.12 and later, the :x and :y

keyword arguments of capi:display-tooltip might not be handled.

12.17.2 Problems with LispWorks for Macintosh

The Motif GUI does not work "out of the box" with Fink because LispWorks does not look for libXm etc in /sw/lib/.

12.17.3 Problems with the LispWorks IDE on Cocoa

Multithreading in the CAPI is different from other platforms. In particular, all windows run in a single thread, whereas on
other platforms there is a thread per window.

The debugger currently does not work for errors in Cocoa Event Loop or Editor Command Loop threads. However, there is a
Get Backtrace button so you can obtain a backtrace and also a Debug Snapshot button which aborts from the error but
displays a debugger with a copy (snapshot) of the stack where the error occurred.

The online documentation interface currently starts a new browser window each time.

Setting lispworks:*enter-debugger-directly* to t can allow the undebuggable processes to enter the debugger,
resulting in the UI freezing.

Inspecting a long list (for example, 1000 items) via the Listener's Inspect Star editor command prompts you about truncation
in a random window. If you cancel, the Inspector is still displayed.

The Definitions > Compile and Definitions > Evaluate menu options cause multiple "Press space to continue" messages to be
displayed and happen interleaved rather than sequentially.

The Buffers > Compile and Buffers > Evaluate menu options cause multiple "Press space to continue" messages to be
displayed and happen interleaved rather than sequentially.

12.17.4 Problems with CAPI and Graphics Ports on Cocoa

The capi:interface-override-cursor is ignored.

Some graphics state parameters are ignored, in particular operation, stipple, pattern and fill-style.

LispWorks ignores the System Preferences setting for the smallest font size to smooth.

There is no support for state images or checkboxes in capi:tree-view.

capi:with-page does not work, because Cocoa tries to control page printing.

The :help-callback initarg is only implemented for the :tooltip value of the type argument.

12 Release Notes

87

The :visible-border initarg only works for scrolling panes.

Caret movement and selection setting in capi:text-input-pane is implemented, but note that it works only for the
focussed pane.

capi:docking-layout does not support (un)docking.

There is no meta key in the input-model of capi:output-pane. Note that, in the editor when using Emacs emulation, the
Escape key can be used as a prefix.

There has been no testing with 256 color displays.

Some pinboard code uses :operation boole-xor which is not implemented.

The default menu bar is visible when the current window has no menu bar.

capi:tree-view is slow for a large number (thousands) of items.

The editor displays decomposed characters as separate glyphs.

The :gap option is not supported for the columns of capi:multi-column-list-panel.

capi:display-dialog ignores the specified :x and :y coordinates of the dialog (for drop-down sheets the coordinates are
not relevant, and for dialogs which are separate windows Cocoa forces the window to be in the top-center of the screen).

12.18 Binary Incompatibility

If you have binaries (fasl files) which were compiled using LispWorks 8.0 or previous versions, please note that these are not
compatible with this release. Please recompile all your code with LispWorks 8.1.

12 Release Notes

88

Index

A

accessors

interface-override-cursor 12.17.1 : Problems with CAPI on GTK+ 87, 12.17.4 : Problems with CAPI and Graphics Ports on
Cocoa 87

jobject-field-value 12.8.26 : Accessing fields in the Java interface without specifying a class name 81

user-preference 12.8.8 : Removing a user-preference value 79

adjust-array function 12.15.4 : Using :displaced-index-offset without :displaced-to signals an error 86

apple-err-ssl-protocol constant 12.8.17 : Miscellaneous changes for SSL connections 80

async-io-state type 12.8.20 : Waiting for asynchronous input to be available 81

async-io-state-shutdown function 12.8.19 : Performing a shutdown on an async-io-state 80

async-io-state-wait-for-input function 12.8.20 : Waiting for asynchronous input to be available 81

B

:bool FLI type descriptor 12.11.1 : Boolean types 84

:boolean FLI type descriptor 12.11.1 : Boolean types 84

buffered-stream class 12.8.22 : Using static buffers with buffered-stream 81

built-in-class class 12.14.1 : class-prototype for built-in-class 85

button class 12.5.16 : The armed-image is now implemented for button on Cocoa 76

C

call-system function 12.8.9 : The current directory in a shell command 79

call-system-showing-output function 12.8.9 : The current directory in a shell command 79, 12.8.10 : New :external-format
argument to call-system-showing-output 79

char-upcase function 12.8.4 : Recognizing case in characters that are not base-char 78

classes

buffered-stream 12.8.22 : Using static buffers with buffered-stream 81

built-in-class 12.14.1 : class-prototype for built-in-class 85

button 12.5.16 : The armed-image is now implemented for button on Cocoa 76

column-layout 12.5.14 : Preventing a pane from being resized except by a layout divider 76

docking-layout 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

dummy-pane 12.5.13 : Leaving resizble gaps in a layout 75

editor-pane 12.5.1 : Line numbers in editor-pane 74, 12.17.1 : Problems with CAPI on GTK+ 87

external-image 12.6.1 : Newly documented initargs for external-image 77

grid-layout 12.5.14 : Preventing a pane from being resized except by a layout divider 76

list-panel 12.5.2 : In-place editing for tree-view and list-panel 74

menu-item 12.5.18 : The accelerator in a menu-item on Cocoa can now specify just Control-Option 76

89

multi-column-list-panel 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

option-pane 12.17.1 : Problems with CAPI on GTK+ 87

output-pane 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

row-layout 12.5.14 : Preventing a pane from being resized except by a layout divider 76

slider 12.5.17 : Displaying a level indicator on Cocoa 76

standard-objc-object 12.12.3 : The NSCopying protocol 84

text-input-pane 12.5.19 : Aligning the text in text-input-pane 76, 12.17.1 : Problems with CAPI on GTK+ 87, 12.17.4 :
Problems with CAPI and Graphics Ports on Cocoa 88

tree-view 12.5.2 : In-place editing for tree-view and list-panel 74, 12.5.20 : Controlling tree-view buttons and lines on Microsoft
Windows 76, 12.5.22 : Horizontal scrolling for tree-view 77, 12.17.4 : Problems with CAPI and Graphics Ports on
Cocoa 87, 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

class-prototype generic function 12.14.1 : class-prototype for built-in-class 85

clipboard function 12.5.24 : Clipboard and selection functions return a second value 77

clipboard-empty function 12.5.24 : Clipboard and selection functions return a second value 77

collection-item-edit function 12.5.2 : In-place editing for tree-view and list-panel 74

collection-item-get-editing-string function 12.5.2 : In-place editing for tree-view and list-panel 74

collection-item-set-editing-string function 12.5.2 : In-place editing for tree-view and list-panel 74

column-layout class 12.5.14 : Preventing a pane from being resized except by a layout divider 76

command line arguments

-init 11.9.5 : Reporting crashes 69

-init on Linux 10.3.2 : Configuration files available 55, 10.5 : Initializing LispWorks 57

-init on macOS 8.3.3 : Configuration files available 42, 8.5 : Initializing LispWorks 45

-init on Windows 9.3.2 : Configuration files available 49, 9.5 : Initializing LispWorks 51

-siteinit on Linux 10.3.2 : Configuration files available 55

-siteinit on macOS 8.3.3 : Configuration files available 42

-siteinit on Windows 9.3.2 : Configuration files available 49

Comment Region editor command 12.10.8 : Uncommenting (removing comment markers) 83

compile-file function 12.8.12 : compile-file with non-nil :load signals an error for compilation failure 80

concatenate* function 12.8.3 : Concatenating a long list of sequences 78

condition classes

ssl-version-or-cipher-mismatch 12.8.17 : Miscellaneous changes for SSL connections 80

connect function 12.13.1 : New odbc-keywords keyword argument for connect 85

constants

apple-err-ssl-protocol 12.8.17 : Miscellaneous changes for SSL connections 80

copy-file function 12.8.14 : New copy-times-p and copy-permissions-p arguments copy-file 80

corrupted executable 11.1.5 : Corrupted LispWorks executable 61

create-light-dark-switchable-color function 12.7.1 : Colors that vary between light and dark mode 77

create-universal-binary function 12.8.11 : hcl:create-universal-binary can create a shared library 79

D

decode-external-string function 12.8.16 : Additional options for encoding and decoding external formats 80

Index

90

define-objc-typedef function 12.12.2 : Handling typedefs 84

deliver function 12.3.3 : macOS universal binaries 73, 12.3.4 : macOS images are split into two files by default 73

display-dialog function 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

display-non-focus-message function 12.5.4 : Support for Wayland on GTK+ 75

display-tooltip function 12.17.1 : Problems with CAPI on GTK+ 87

docking-layout class 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

dummy-pane class 12.5.13 : Leaving resizble gaps in a layout 75

dump-forms-to-file function 12.15.6 : Loading old data files 86

E

editor commands

Comment Region 12.10.8 : Uncommenting (removing comment markers) 83

Emacs Command 12.10.3 : The Emacs Command editor command 83

Evaluate Defun In Listener 12.10.6 : Evaluation in Listener commands do not usually insert text now 83

Evaluate Last Form In Listener 12.10.6 : Evaluation in Listener commands do not usually insert text now 83

Evaluate Nearest Form 12.10.5 : New editor commands to evaluate forms 83

Evaluate Nearest Form In Listener 12.10.5 : New editor commands to evaluate forms 83

Evaluate Next Form 12.10.5 : New editor commands to evaluate forms 83

Evaluate Next Form In Listener 12.10.5 : New editor commands to evaluate forms 83

Evaluate Region In Listener 12.10.6 : Evaluation in Listener commands do not usually insert text now 83

Kill Some Buffers 12.10.4 : New command Kill Some Buffers 83

Load File In Listener 12.10.7 : Using the Listener to load a file 83

Toggle Showing Line Numbers 12.9.2 : Displaying line numbers in the Editor 82, 12.10.2 : Displaying line numbers 83

Uncomment Multi Line Comment 12.10.8 : Uncommenting (removing comment markers) 83

editor-pane class 12.5.1 : Line numbers in editor-pane 74, 12.17.1 : Problems with CAPI on GTK+ 87

editor-pane-arglist-displayer-style generic function 12.5.23 : Controlling the color of in-place completion dialogs 77

editor-pane-default-line-numbers-background variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-font variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-foreground variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-highlight-background variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-highlight-foreground variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-right-gap variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-separator-color variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-separator-dash variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-separator-thickness variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-width-string variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-wrapped-string variable 12.5.1 : Line numbers in editor-pane 74

editor-pane-evaluate-region-in-listener function 12.5.8 : Evaluating forms in a Listener 75

editor-pane-in-place-style generic function 12.5.23 : Controlling the color of in-place completion dialogs 77

editor-pane-set-line-numbers-appearance function 12.5.1 : Line numbers in editor-pane 74

Index

91

Emacs Command editor command 12.10.3 : The Emacs Command editor command 83

encode-lisp-string function 12.8.16 : Additional options for encoding and decoding external formats 80

enter-debugger-directly variable 12.17.3 : Problems with the LispWorks IDE on Cocoa 87

errors while building application 11.1.3 : Build phase (delivery-time) errors 61

errors while delivering application 11.1.3 : Build phase (delivery-time) errors 61

Evaluate Defun In Listener editor command 12.10.6 : Evaluation in Listener commands do not usually insert text now 83

Evaluate Last Form In Listener editor command 12.10.6 : Evaluation in Listener commands do not usually insert text now 83

Evaluate Nearest Form editor command 12.10.5 : New editor commands to evaluate forms 83

Evaluate Nearest Form In Listener editor command 12.10.5 : New editor commands to evaluate forms 83

Evaluate Next Form editor command 12.10.5 : New editor commands to evaluate forms 83

Evaluate Next Form In Listener editor command 12.10.5 : New editor commands to evaluate forms 83

Evaluate Region In Listener editor command 12.10.6 : Evaluation in Listener commands do not usually insert text now 83

extended-time macro 11.9.2 : Performance Issues 67

external formats

:gb18030 12.8.23 : The :gb18030 external format is now GB18030-2022 81

:us-ascii 12.8.24 : The :us-ascii external format 81

:utf-8 12.8.25 : Incomplete utf-8 input now signals an error 81

external-image class 12.6.1 : Newly documented initargs for external-image 77

F

Failed to enlarge memory 11.1.4 : Memory requirements 61

features variable 12.2.1 : Conditionalizing code for different versions of LispWorks 72, 12.15.1 : Changes in *features* 85

fill-style graphics state parameter 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 87

FLI type descriptors

:bool 12.11.1 : Boolean types 84

:boolean 12.11.1 : Boolean types 84

:int-boolean 12.11.1 : Boolean types 84

force-dark-mode function 12.5.5 : Forcing dark mode on GTK+ 75

foreign-symbol-defined-p function 12.11.3 : Checking if a foreign symbol is defined 84

functions

adjust-array 12.15.4 : Using :displaced-index-offset without :displaced-to signals an error 86

async-io-state-shutdown 12.8.19 : Performing a shutdown on an async-io-state 80

async-io-state-wait-for-input 12.8.20 : Waiting for asynchronous input to be available 81

call-system 12.8.9 : The current directory in a shell command 79

call-system-showing-output 12.8.9 : The current directory in a shell command 79, 12.8.10 : New :external-format argument to
call-system-showing-output 79

char-upcase 12.8.4 : Recognizing case in characters that are not base-char 78

clipboard 12.5.24 : Clipboard and selection functions return a second value 77

clipboard-empty 12.5.24 : Clipboard and selection functions return a second value 77

collection-item-edit 12.5.2 : In-place editing for tree-view and list-panel 74

collection-item-get-editing-string 12.5.2 : In-place editing for tree-view and list-panel 74

Index

92

collection-item-set-editing-string 12.5.2 : In-place editing for tree-view and list-panel 74

compile-file 12.8.12 : compile-file with non-nil :load signals an error for compilation failure 80

concatenate* 12.8.3 : Concatenating a long list of sequences 78

connect 12.13.1 : New odbc-keywords keyword argument for connect 85

copy-file 12.8.14 : New copy-times-p and copy-permissions-p arguments copy-file 80

create-light-dark-switchable-color 12.7.1 : Colors that vary between light and dark mode 77

create-universal-binary 12.8.11 : hcl:create-universal-binary can create a shared library 79

decode-external-string 12.8.16 : Additional options for encoding and decoding external formats 80

define-objc-typedef 12.12.2 : Handling typedefs 84

deliver 12.3.3 : macOS universal binaries 73, 12.3.4 : macOS images are split into two files by default 73

display-dialog 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

display-non-focus-message 12.5.4 : Support for Wayland on GTK+ 75

display-tooltip 12.17.1 : Problems with CAPI on GTK+ 87

dump-forms-to-file 12.15.6 : Loading old data files 86

editor-pane-evaluate-region-in-listener 12.5.8 : Evaluating forms in a Listener 75

editor-pane-set-line-numbers-appearance 12.5.1 : Line numbers in editor-pane 74

encode-lisp-string 12.8.16 : Additional options for encoding and decoding external formats 80

force-dark-mode 12.5.5 : Forcing dark mode on GTK+ 75

foreign-symbol-defined-p 12.11.3 : Checking if a foreign symbol is defined 84

interface-being-created-p 12.5.9 : Checking if an interface is currently displayed 75

interface-displayed-p 12.5.9 : Checking if an interface is currently displayed 75

interface-fully-created-p 12.5.9 : Checking if an interface is currently displayed 75

interface-fully-destroyed-p 12.5.9 : Checking if an interface is currently displayed 75

invoke 12.12.4 : Calling variadic methods with objc:invoke 85, 12.12.4 : Calling variadic methods with objc:invoke 85

invoke-into 12.12.4 : Calling variadic methods with objc:invoke 85

light-dark-switchable-color-dark-color 12.7.1 : Colors that vary between light and dark mode 77

light-dark-switchable-color-light-color 12.7.1 : Colors that vary between light and dark mode 77

light-dark-switchable-color-p 12.7.1 : Colors that vary between light and dark mode 77

light-dark-switchable-color-set-colors 12.7.1 : Colors that vary between light and dark mode 77

load-data-file 12.15.6 : Loading old data files 86

log-bug-form 11.9.6 : Log Files 69

make-array 12.15.4 : Using :displaced-index-offset without :displaced-to signals an error 86

make-image-from-port 12.6.2 : gp:make-image-from-port should not be used with capi:output-pane 77

monitor-directory-changes 12.8.15 : Detecting changes in a file system directory 80

ns-string-to-string 12.12.1 : NSString conversion functions 84

nstring-capitalize 12.8.4 : Recognizing case in characters that are not base-char 78

nstring-upcase 12.8.4 : Recognizing case in characters that are not base-char 78

open-pipe 12.8.9 : The current directory in a shell command 79

open-tcp-stream-using-java 12.8.18 : handshake-timeout for open-tcp-stream-using-java 80

Index

93

pane-scale-factor 12.5.7 : Determining scale factor for graphics 75

proclaim 12.15.3 : Handling of proclaim as a top level form during file compilation 85

prompt-with-list-non-focus 12.5.4 : Support for Wayland on GTK+ 75

quit-all-contain-interfaces 12.5.12 : Closing all interfaces that have been created with contain 75

read-java-field 12.8.26 : Accessing fields in the Java interface without specifying a class name 81

remove-user-preference 12.8.8 : Removing a user-preference value 79

room 11.9.2 : Performance Issues 67

run-shell-command 12.8.9 : The current directory in a shell command 79

save-image 12.3.3 : macOS universal binaries 73, 12.3.4 : macOS images are split into two files by default 73

screen-display-type 12.5.4 : Support for Wayland on GTK+ 74

screen-scale-factor 12.5.7 : Determining scale factor for graphics 75

selection 12.5.24 : Clipboard and selection functions return a second value 77

selection-empty 12.5.24 : Clipboard and selection functions return a second value 77

set-compile-file-proclaim-handling 12.15.3 : Handling of proclaim as a top level form during file compilation 85

set-dpi-awareness 12.5.6 : Scaling graphics for high resolution monitors on Microsoft Windows 75

set-layout-description-and-ratios 12.5.14 : Preventing a pane from being resized except by a layout divider 76

set-layout-ratios-keeping-fixed 12.5.14 : Preventing a pane from being resized except by a layout divider 76

set-top-level-interface-geometry 12.5.4 : Support for Wayland on GTK+ 74

simple-pane-block-mouse-wheel 12.5.11 : Blocking mouse wheel events 75

simple-pane-show-scroll-bars 12.5.10 : Hiding or showing scroll bars 75

ssl-condition-ssl-code 12.8.17 : Miscellaneous changes for SSL connections 80

ssl-connection-implementation 12.8.17 : Miscellaneous changes for SSL connections 80

ssl-connection-verify 12.8.17 : Miscellaneous changes for SSL connections 80

start-environment 2.5.3 : Start the Motif LispWorks GUI 17

string-capitalize 12.8.4 : Recognizing case in characters that are not base-char 78

string-to-ns-string 12.12.1 : NSString conversion functions 84

string-upcase 12.8.4 : Recognizing case in characters that are not base-char 78

top-level-interface-geometry 12.5.4 : Support for Wayland on GTK+ 74

wait-state-collection-alive-p 12.8.21 : Detecting if a wait-state-collection is alive 81

G

Garbage Collector message 11.1.4 : Memory requirements 61

Garbage Collector output 11.1.4 : Memory requirements 61

:gb18030 external format 12.8.23 : The :gb18030 external format is now GB18030-2022 81

GC message 11.1.4 : Memory requirements 61

GC output 11.1.4 : Memory requirements 61

generic functions

class-prototype 12.14.1 : class-prototype for built-in-class 85

editor-pane-arglist-displayer-style 12.5.23 : Controlling the color of in-place completion dialogs 77

editor-pane-in-place-style 12.5.23 : Controlling the color of in-place completion dialogs 77

Index

94

objc-object-copied 12.12.3 : The NSCopying protocol 84

text-input-pane-in-place-style 12.5.23 : Controlling the color of in-place completion dialogs 77

grid-layout class 12.5.14 : Preventing a pane from being resized except by a layout divider 76

GTK 12.4 : GTK+ window system 73

GTK+ 12.4 : GTK+ window system 73

H

:help-callback initarg 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 87

I

IDE 12.9 : IDE changes 82

Install Private Patches... menu command 11.2.1 : Private patches not loaded on Windows 7, 8 & 10 62, 11.8.3.2 : Private patches 67

:int-boolean FLI type descriptor 12.11.1 : Boolean types 84

Integrated Development Environment 12.9 : IDE changes 82

interface-being-created-p function 12.5.9 : Checking if an interface is currently displayed 75

interface-displayed-p function 12.5.9 : Checking if an interface is currently displayed 75

interface-fully-created-p function 12.5.9 : Checking if an interface is currently displayed 75

interface-fully-destroyed-p function 12.5.9 : Checking if an interface is currently displayed 75

interface-override-cursor accessor 12.17.1 : Problems with CAPI on GTK+ 87, 12.17.4 : Problems with CAPI and Graphics
Ports on Cocoa 87

invoke function 12.12.4 : Calling variadic methods with objc:invoke 85, 12.12.4 : Calling variadic methods with objc:invoke 85

invoke-into function 12.12.4 : Calling variadic methods with objc:invoke 85

J

jobject-field-value accessor 12.8.26 : Accessing fields in the Java interface without specifying a class name 81

K

Kill Some Buffers editor command 12.10.4 : New command Kill Some Buffers 83

L

light-dark-switchable-color-dark-color function 12.7.1 : Colors that vary between light and dark mode 77

light-dark-switchable-color-light-color function 12.7.1 : Colors that vary between light and dark mode 77

light-dark-switchable-color-p function 12.7.1 : Colors that vary between light and dark mode 77

light-dark-switchable-color-set-colors function 12.7.1 : Colors that vary between light and dark mode 77

LispWorks fails to start 11.1.5 : Corrupted LispWorks executable 61

LispWorks for Android Runtime 7.1 : Installing LispWorks for Android Runtime 40

LispWorks for iOS Runtime 7.2 : Installing LispWorks for iOS Runtime 40

LispWorks for Mobile Runtime 7 : Installation of LispWorks for Mobile Runtime 40

LispWorks IDE tools

Editor 12.10 : Editor changes 83

list-panel class 12.5.2 : In-place editing for tree-view and list-panel 74

load-data-file function 12.15.6 : Loading old data files 86

Load File In Listener editor command 12.10.7 : Using the Listener to load a file 83

Index

95

locale-external-formats variable 12.11.2 : fli:*locale-external-formats* is not used at all now 84

log-bug-form function 11.9.6 : Log Files 69

M

macros

extended-time 11.9.2 : Performance Issues 67

profile 11.9.2 : Performance Issues 67

with-output-to-fasl-file 12.15.6 : Loading old data files 86

with-page 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 87

with-running-operation 12.10.9 : Avoiding user interactions when calling editor functions 84

make-array function 12.15.4 : Using :displaced-index-offset without :displaced-to signals an error 86

make-image-from-port function 12.6.2 : gp:make-image-from-port should not be used with capi:output-pane 77

menu-item class 12.5.18 : The accelerator in a menu-item on Cocoa can now specify just Control-Option 76

monitor-directory-changes function 12.8.15 : Detecting changes in a file system directory 80

Motif 12.4 : GTK+ window system 73

move LispWorks to another computer 11.10 : Transferring LispWorks to a different machine 70

moving LispWorks to another computer 11.10 : Transferring LispWorks to a different machine 70

multi-column-list-panel class 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

N

ns-string-to-string function 12.12.1 : NSString conversion functions 84

nstring-capitalize function 12.8.4 : Recognizing case in characters that are not base-char 78

nstring-upcase function 12.8.4 : Recognizing case in characters that are not base-char 78

O

objc-object-copied generic function 12.12.3 : The NSCopying protocol 84

open-pipe function 12.8.9 : The current directory in a shell command 79

open-tcp-stream-using-java function 12.8.18 : handshake-timeout for open-tcp-stream-using-java 80

operation graphics state parameter 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 87

option-pane class 12.17.1 : Problems with CAPI on GTK+ 87

output-pane class 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

P

pane-scale-factor function 12.5.7 : Determining scale factor for graphics 75

pattern graphics state parameter 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 87

poor performance 11.9.2 : Performance Issues 67

print-escape-potential-numbers variable 12.8.2 : Printing potential numbers without escapes 78

private patches

not loaded on Windows 11.2.1 : Private patches not loaded on Windows 7, 8 & 10 62

proclaim function 12.15.3 : Handling of proclaim as a top level form during file compilation 85

profile macro 11.9.2 : Performance Issues 67

Index

96

prompt-with-list-non-focus function 12.5.4 : Support for Wayland on GTK+ 75

Q

quit-all-contain-interfaces function 12.5.12 : Closing all interfaces that have been created with contain 75

R

read-java-field function 12.8.26 : Accessing fields in the Java interface without specifying a class name 81

Register... menu command 2.7 : Upgrading the LispWorks Edition 17, 3.4 : Upgrading the LispWorks Edition 20, 4.10 : Upgrading the
LispWorks Edition 28, 5.9 : Upgrading the LispWorks Edition 33, 6.10 : Upgrading the LispWorks Edition 38

remove-user-preference function 12.8.8 : Removing a user-preference value 79

room function 11.9.2 : Performance Issues 67

row-layout class 12.5.14 : Preventing a pane from being resized except by a layout divider 76

run-shell-command function 12.8.9 : The current directory in a shell command 79

S

save-image function 12.3.3 : macOS universal binaries 73, 12.3.4 : macOS images are split into two files by default 73

screen-display-type function 12.5.4 : Support for Wayland on GTK+ 74

screen-scale-factor function 12.5.7 : Determining scale factor for graphics 75

selection function 12.5.24 : Clipboard and selection functions return a second value 77

selection-empty function 12.5.24 : Clipboard and selection functions return a second value 77

set-compile-file-proclaim-handling function 12.15.3 : Handling of proclaim as a top level form during file compilation 85

set-dpi-awareness function 12.5.6 : Scaling graphics for high resolution monitors on Microsoft Windows 75

set-layout-description-and-ratios function 12.5.14 : Preventing a pane from being resized except by a layout divider 76

set-layout-ratios-keeping-fixed function 12.5.14 : Preventing a pane from being resized except by a layout divider 76

set-top-level-interface-geometry function 12.5.4 : Support for Wayland on GTK+ 74

short-float type 12.14.2 : short-float is no longer a class on 64-bit 85

simple-pane-block-mouse-wheel function 12.5.11 : Blocking mouse wheel events 75

simple-pane-show-scroll-bars function 12.5.10 : Hiding or showing scroll bars 75

single-float type 12.14.2 : short-float is no longer a class on 64-bit 85

slider class 12.5.17 : Displaying a level indicator on Cocoa 76

ssl-condition-ssl-code function 12.8.17 : Miscellaneous changes for SSL connections 80

ssl-connection-implementation function 12.8.17 : Miscellaneous changes for SSL connections 80

ssl-connection-verify function 12.8.17 : Miscellaneous changes for SSL connections 80

ssl-version-or-cipher-mismatch condition class 12.8.17 : Miscellaneous changes for SSL connections 80

standard-objc-object class 12.12.3 : The NSCopying protocol 84

start-environment function 2.5.3 : Start the Motif LispWorks GUI 17

stipple graphics state parameter 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 87

string-capitalize function 12.8.4 : Recognizing case in characters that are not base-char 78

string-to-ns-string function 12.12.1 : NSString conversion functions 84

string-upcase function 12.8.4 : Recognizing case in characters that are not base-char 78

Index

97

T

text-input-pane class 12.5.19 : Aligning the text in text-input-pane 76, 12.17.1 : Problems with CAPI on GTK+ 87, 12.17.4 :
Problems with CAPI and Graphics Ports on Cocoa 88

text-input-pane-in-place-style generic function 12.5.23 : Controlling the color of in-place completion dialogs 77

Toggle Showing Line Numbers editor command 12.9.2 : Displaying line numbers in the Editor 82, 12.10.2 : Displaying line numbers 83

top-level-interface-geometry function 12.5.4 : Support for Wayland on GTK+ 74

transfer LispWorks to another computer 11.10 : Transferring LispWorks to a different machine 70

transferring LispWorks to another computer 11.10 : Transferring LispWorks to a different machine 70

tree-view class 12.5.2 : In-place editing for tree-view and list-panel 74, 12.5.20 : Controlling tree-view buttons and lines on Microsoft
Windows 76, 12.5.22 : Horizontal scrolling for tree-view 77, 12.17.4 : Problems with CAPI and Graphics Ports on
Cocoa 87, 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

types

async-io-state 12.8.20 : Waiting for asynchronous input to be available 81

short-float 12.14.2 : short-float is no longer a class on 64-bit 85

single-float 12.14.2 : short-float is no longer a class on 64-bit 85

U

uiop:defgeneric* removed from ASDF 12.15.2 : ASDF version 85

uiop:defun* removed from ASDF 12.15.2 : ASDF version 85

Uncomment Multi Line Comment editor command 12.10.8 : Uncommenting (removing comment markers) 83

uninstalling LispWorks

on FreeBSD 6.9 : Uninstalling LispWorks for FreeBSD 38

on Linux 4.9 : Uninstalling LispWorks for Linux 28

on Macintosh 2.6 : Uninstalling LispWorks for Macintosh 17

on Windows 3.3 : Uninstalling LispWorks for Windows 20

on x86/x64 Solaris 5.8 : Uninstalling LispWorks for x86/x64 Solaris 33

universal binaries

supported 12.3.3 : macOS universal binaries 73

universal binary

supported 12.3.3 : macOS universal binaries 73

:us-ascii external format 12.8.24 : The :us-ascii external format 81

user-preference accessor 12.8.8 : Removing a user-preference value 79

:utf-8 external format 12.8.25 : Incomplete utf-8 input now signals an error 81

V

variables

editor-pane-default-line-numbers-background 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-font 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-foreground 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-highlight-background 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-highlight-foreground 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-right-gap 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-separator-color 12.5.1 : Line numbers in editor-pane 74

Index

98

editor-pane-default-line-numbers-separator-dash 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-separator-thickness 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-width-string 12.5.1 : Line numbers in editor-pane 74

editor-pane-default-line-numbers-wrapped-string 12.5.1 : Line numbers in editor-pane 74

enter-debugger-directly 12.17.3 : Problems with the LispWorks IDE on Cocoa 87

features 12.2.1 : Conditionalizing code for different versions of LispWorks 72, 12.15.1 : Changes in *features* 85

locale-external-formats 12.11.2 : fli:*locale-external-formats* is not used at all now 84

print-escape-potential-numbers 12.8.2 : Printing potential numbers without escapes 78

:visible-border initarg 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 88

W

wait-state-collection-alive-p function 12.8.21 : Detecting if a wait-state-collection is alive 81

window system 12.4 : GTK+ window system 73

with-output-to-fasl-file macro 12.15.6 : Loading old data files 86

with-page macro 12.17.4 : Problems with CAPI and Graphics Ports on Cocoa 87

with-running-operation macro 12.10.9 : Avoiding user interactions when calling editor functions 84

Non-alaphanumerics

"Not yet multiprocessing." error 11.1.3 : Build phase (delivery-time) errors 61

Index

99

	Release Notes and Installation Guide
	Copyrights and Trademarks
	Contents
	1 Introduction
	1.1 LispWorks Editions
	1.1.1 Personal Edition
	1.1.2 Hobbyist Edition
	1.1.3 HobbyistDV Edition
	1.1.4 Professional Edition
	1.1.5 Enterprise Edition

	1.2 LispWorks for Mobile Runtime
	1.3 Evaluation quick guide
	1.4 Further details
	1.5 About this Guide
	1.5.1 Installation and Configuration
	1.5.2 Troubleshooting
	1.5.3 Release Notes

	2 Installation on macOS
	2.1 Choosing the Graphical User Interface
	2.2 Documentation
	2.3 Software and hardware requirements
	2.4 Installing LispWorks for Macintosh
	2.4.1 Main installation and patches
	2.4.2 Information for Beta testers
	2.4.3 Information for users of previous versions
	2.4.4 Launch the LispWorks installer
	2.4.5 The Read Me
	2.4.6 The License Agreement
	2.4.7 Install Location
	2.4.8 Choose your installation type
	2.4.8.1 The native macOS GUI
	2.4.8.2 The X11 GTK+ and Motif GUIs
	2.4.8.3 The Documentation

	2.4.9 Installing and entering license data
	2.4.10 LispWorks is added to the Dock
	2.4.11 Finishing up
	2.4.12 Installing Patches
	2.4.13 Obtaining X11 GTK+
	2.4.14 Obtaining Open Motif and Imlib2

	2.5 Starting LispWorks for Macintosh
	2.5.1 Start the native macOS LispWorks GUI
	2.5.2 Start the GTK+ LispWorks GUI
	2.5.3 Start the Motif LispWorks GUI

	2.6 Uninstalling LispWorks for Macintosh
	2.7 Upgrading the LispWorks Edition

	3 Installation on Windows
	3.1 Documentation
	3.2 Installing LispWorks for Windows
	3.2.1 Main installation and patches
	3.2.2 Visual Studio runtime components and Windows Installer
	3.2.3 Installing over previous versions
	3.2.4 Information for Beta testers
	3.2.5 To install LispWorks
	3.2.5.1 Entering the License Data
	3.2.5.2 Installation location
	3.2.5.3 Installing the Documentation
	3.2.5.4 Installing Patches
	3.2.5.5 Starting LispWorks

	3.3 Uninstalling LispWorks for Windows
	3.4 Upgrading the LispWorks Edition
	3.5 Upgrading to 64-bit LispWorks

	4 Installation on Linux
	4.1 Software and hardware requirements
	4.1.1 GUI libraries
	4.1.1.1 GTK+
	4.1.1.2 Motif

	4.1.2 Disk requirements

	4.2 License agreement
	4.3 Software delivery and installer formats
	4.3.1 Contents of the LispWorks distribution

	4.4 Installing LispWorks for Linux
	4.4.1 Main installation and patches
	4.4.2 Installing over previous versions
	4.4.3 Information for Beta testers
	4.4.4 Installation from the binary RPM file (x86 and x86_64 only)
	4.4.4.1 Installation directories
	4.4.4.2 Selecting the correct RPM files
	4.4.4.3 Installing or upgrading LispWorks for Linux
	4.4.4.4 Installing CLIM 2.0
	4.4.4.5 Installing loadable Enterprise Edition modules
	4.4.4.6 Documentation and saving space
	4.4.4.7 Installing Patches

	4.4.5 Installation from the tar files
	4.4.5.1 Installing Patches

	4.5 LispWorks looks for a license key
	4.6 Running LispWorks
	4.6.1 Entering the license data

	4.7 Configuring the image
	4.8 Printable LispWorks documentation
	4.9 Uninstalling LispWorks for Linux
	4.10 Upgrading the LispWorks Edition
	4.11 Upgrading to 64-bit LispWorks

	5 Installation on x86/x64 Solaris
	5.1 Software and hardware requirements
	5.1.1 GUI libraries
	5.1.1.1 GTK+
	5.1.1.2 Motif

	5.1.2 Disk requirements

	5.2 Software delivery and installer format
	5.2.1 Contents of the LispWorks distribution
	5.2.2 Personal Edition distribution

	5.3 Installing LispWorks for x86/x64 Solaris
	5.3.1 Main installation and patches
	5.3.2 Installing over previous versions
	5.3.3 Information for Beta testers
	5.3.4 Installation directories
	5.3.5 Selecting the correct software package file
	5.3.6 Installing the package file
	5.3.7 Installing Patches

	5.4 LispWorks looks for a license key
	5.5 Running LispWorks
	5.5.1 Entering the license data

	5.6 Configuring the image
	5.7 Printable LispWorks documentation
	5.8 Uninstalling LispWorks for x86/x64 Solaris
	5.9 Upgrading the LispWorks Edition
	5.10 Upgrading to 64-bit LispWorks

	6 Installation on FreeBSD
	6.1 Software and hardware requirements
	6.1.1 GUI libraries
	6.1.1.1 GTK+
	6.1.1.2 Motif

	6.1.2 Disk requirements

	6.2 License agreement
	6.3 Software delivery and installer format
	6.3.1 Contents of the LispWorks distribution
	6.3.2 Personal Edition distribution

	6.4 Installing LispWorks for FreeBSD
	6.4.1 Main installation and patches
	6.4.2 Installing over previous versions
	6.4.3 Information for Beta testers
	6.4.4 Installation directories
	6.4.5 Selecting the correct software package file
	6.4.6 Installing LispWorks for FreeBSD
	6.4.7 Installing Patches

	6.5 LispWorks looks for a license key
	6.6 Running LispWorks
	6.6.1 Entering the license data

	6.7 Configuring the image
	6.8 Printable LispWorks documentation
	6.9 Uninstalling LispWorks for FreeBSD
	6.10 Upgrading the LispWorks Edition
	6.11 Upgrading to 64-bit LispWorks

	7 Installation of LispWorks for Mobile Runtime
	7.1 Installing LispWorks for Android Runtime
	7.2 Installing LispWorks for iOS Runtime

	8 Configuration on macOS
	8.1 Introduction
	8.2 License keys
	8.3 Configuring your LispWorks installation
	8.3.1 Levels of configuration
	8.3.2 Configuring images for the different GUIs
	8.3.3 Configuration files available

	8.4 Saving and testing the configured image
	8.4.1 Create a configuration file
	8.4.2 Create and use a save-image script
	8.4.3 What to do if no image is saved
	8.4.4 Testing the newly saved image
	8.4.5 Saving a non-windowing image

	8.5 Initializing LispWorks
	8.6 Loading CLIM 2.0
	8.7 The Common SQL interface
	8.7.1 Loading Common SQL
	8.7.2 Supported databases
	8.7.3 Special considerations when using Common SQL
	8.7.3.1 Location of .odbc.ini
	8.7.3.2 Errors using PSQLODBC
	8.7.3.3 psqlODBC version
	8.7.3.4 Locating the Oracle, MySQL or PostgreSQL client libraries

	8.8 Common Prolog and KnowledgeWorks

	9 Configuration on Windows
	9.1 Introduction
	9.2 License keys
	9.3 Configuring your LispWorks installation
	9.3.1 Levels of configuration
	9.3.2 Configuration files available

	9.4 Saving and testing the configured image
	9.4.1 Create a configuration file
	9.4.2 Create and use a save-image script
	9.4.3 What to do if no image is saved
	9.4.4 Testing the newly saved image
	9.4.5 Saving a non-windowing image

	9.5 Initializing LispWorks
	9.6 Loading CLIM 2.0
	9.6.1 Running the CLIM demos

	9.7 The Common SQL interface
	9.7.1 Loading the Common SQL interface

	9.8 Common Prolog and KnowledgeWorks
	9.9 Runtime library requirement on Windows

	10 Configuration on Linux, x86/x64 Solaris & FreeBSD
	10.1 Introduction
	10.2 License keys
	10.3 Configuring your LispWorks installation
	10.3.1 Levels of configuration
	10.3.2 Configuration files available

	10.4 Saving and testing the configured image
	10.4.1 Create a configuration file
	10.4.2 Create and use a save-image script
	10.4.3 Testing the newly saved image
	10.4.4 Saving a non-windowing image

	10.5 Initializing LispWorks
	10.6 Loading CLIM 2.0
	10.6.1 Running the CLIM demos

	10.7 The Common SQL interface
	10.7.1 Loading the Common SQL interface

	10.8 Common Prolog and KnowledgeWorks
	10.9 Documentation on x86/x64 Solaris and FreeBSD

	11 Troubleshooting, Patches and Reporting Bugs
	11.1 Troubleshooting
	11.1.1 License key errors
	11.1.2 Failure of the load-on-demand system
	11.1.3 Build phase (delivery-time) errors
	11.1.4 Memory requirements
	11.1.5 Corrupted LispWorks executable

	11.2 Troubleshooting on Windows
	11.2.1 Private patches not loaded on Windows 7, 8 & 10

	11.3 Troubleshooting on macOS
	11.3.1 Uninstall requires administrator on macOS

	11.4 Troubleshooting on Linux
	11.4.1 Processes hanging
	11.4.2 RPM_INSTALL_PREFIX not set
	11.4.3 Using multiple versions of Motif on Linux

	11.5 Troubleshooting on x86/x64 Solaris
	11.5.1 GTK+ version

	11.6 Troubleshooting on FreeBSD
	11.7 Troubleshooting on X11/Motif
	11.7.1 Problems with the X server
	11.7.2 Problems with fonts on Motif
	11.7.3 Problems with colors
	11.7.4 Motif mnemonics and Alt
	11.7.5 Non-standard X11/Motif key bindings
	11.7.6 X11/Motif resources
	11.7.7 Motif installation on macOS

	11.8 Updating with patches
	11.8.1 Extracting simple patches
	11.8.2 If you cannot receive email
	11.8.3 Different types of patch
	11.8.3.1 Public patches
	11.8.3.2 Private patches

	11.9 Reporting bugs
	11.9.1 Check for existing fixes
	11.9.2 Performance Issues
	11.9.3 Generate a bug report template
	11.9.4 Add details to your bug report
	11.9.5 Reporting crashes
	11.9.6 Log Files
	11.9.7 Reporting bugs in delivered images
	11.9.8 Send the bug report
	11.9.9 Sending large files
	11.9.10 Information for Personal Edition users

	11.10 Transferring LispWorks to a different machine

	12 Release Notes
	12.1 Keeping your old LispWorks installation
	12.2 Updating your code for LispWorks 8.1
	12.2.1 Conditionalizing code for different versions of LispWorks

	12.3 Platform support
	12.3.1 Running on 64-bit machines
	12.3.2 Code signing LispWorks images
	12.3.3 macOS universal binaries
	12.3.4 macOS images are split into two files by default

	12.4 GTK+ window system
	12.4.1 Using Motif instead of GTK+
	12.4.2 X11/Motif requires Imlib2 except on Solaris

	12.5 New CAPI features
	12.5.1 Line numbers in editor-pane
	12.5.2 In-place editing for tree-view and list-panel
	12.5.3 Support for GTK+ 3
	12.5.4 Support for Wayland on GTK+
	12.5.5 Forcing dark mode on GTK+
	12.5.6 Scaling graphics for high resolution monitors on Microsoft Windows
	12.5.7 Determining scale factor for graphics
	12.5.8 Evaluating forms in a Listener
	12.5.9 Checking if an interface is currently displayed
	12.5.10 Hiding or showing scroll bars
	12.5.11 Blocking mouse wheel events
	12.5.12 Closing all interfaces that have been created with contain
	12.5.13 Leaving resizble gaps in a layout
	12.5.14 Preventing a pane from being resized except by a layout divider
	12.5.15 Recording the positions of layout dividers
	12.5.16 The armed-image is now implemented for button on Cocoa
	12.5.17 Displaying a level indicator on Cocoa
	12.5.18 The accelerator in a menu-item on Cocoa can now specify just Control-Option
	12.5.19 Aligning the text in text-input-pane
	12.5.20 Controlling tree-view buttons and lines on Microsoft Windows
	12.5.21 Column resizing improvement on Microsoft Windows
	12.5.22 Horizontal scrolling for tree-view
	12.5.23 Controlling the color of in-place completion dialogs
	12.5.24 Clipboard and selection functions return a second value

	12.6 New graphics ports features
	12.6.1 Newly documented initargs for external-image
	12.6.2 gp:make-image-from-port should not be used with capi:output-pane

	12.7 New color system features
	12.7.1 Colors that vary between light and dark mode

	12.8 More new features
	12.8.1 Use of setf function names in map-environment and augment-environment
	12.8.2 Printing potential numbers without escapes
	12.8.3 Concatenating a long list of sequences
	12.8.4 Recognizing case in characters that are not base-char
	12.8.5 The compiler can now optimize based on free type declarations
	12.8.6 The compiler can now optimize using symbol macro type declarations
	12.8.7 The compiler now warns about unreferenced uninterned symbols
	12.8.8 Removing a user-preference value
	12.8.9 The current directory in a shell command
	12.8.10 New :external-format argument to call-system-showing-output
	12.8.11 hcl:create-universal-binary can create a shared library
	12.8.12 compile-file with non-nil :load signals an error for compilation failure
	12.8.13 Warnings for uninterned variables that are bound but not referenced
	12.8.14 New copy-times-p and copy-permissions-p arguments copy-file
	12.8.15 Detecting changes in a file system directory
	12.8.16 Additional options for encoding and decoding external formats
	12.8.17 Miscellaneous changes for SSL connections
	12.8.18 handshake-timeout for open-tcp-stream-using-java
	12.8.19 Performing a shutdown on an async-io-state
	12.8.20 Waiting for asynchronous input to be available
	12.8.21 Detecting if a wait-state-collection is alive
	12.8.22 Using static buffers with buffered-stream
	12.8.23 The :gb18030 external format is now GB18030-2022
	12.8.24 The :us-ascii external format
	12.8.25 Incomplete utf-8 input now signals an error
	12.8.26 Accessing fields in the Java interface without specifying a class name
	12.8.27 Improved performance of bignum division on arm64 Linux and Apple Silicon
	12.8.28 Consistency of numeric operations on floats

	12.9 IDE changes
	12.9.1 In-place editing of values in the Inspector
	12.9.2 Displaying line numbers in the Editor
	12.9.3 Highlighting forms within backquote from the debugger
	12.9.4 Editor Find Definitions view has a dropdown list
	12.9.5 Double-click to inspect values in the Listener
	12.9.6 Full text search and searching for complete Lisp symbols in the documentation
	12.9.7 Improved error notification on macOS
	12.9.8 Choosing light or dark mode on macOS

	12.10 Editor changes
	12.10.1 Smooth scrolling in the editor
	12.10.2 Displaying line numbers
	12.10.3 The Emacs Command editor command
	12.10.4 New command Kill Some Buffers
	12.10.5 New editor commands to evaluate forms
	12.10.6 Evaluation in Listener commands do not usually insert text now
	12.10.7 Using the Listener to load a file
	12.10.8 Uncommenting (removing comment markers)
	12.10.9 Avoiding user interactions when calling editor functions

	12.11 Foreign Language interface changes
	12.11.1 Boolean types
	12.11.2 fli:*locale-external-formats* is not used at all now
	12.11.3 Checking if a foreign symbol is defined

	12.12 Objective-C changes
	12.12.1 NSString conversion functions
	12.12.2 Handling typedefs
	12.12.3 The NSCopying protocol
	12.12.4 Calling variadic methods with objc:invoke

	12.13 Common SQL changes
	12.13.1 New odbc-keywords keyword argument for connect

	12.14 CLOS/MOP changes
	12.14.1 class-prototype for built-in-class
	12.14.2 short-float is no longer a class on 64-bit

	12.15 Other changes
	12.15.1 Changes in *features*
	12.15.2 ASDF version
	12.15.3 Handling of proclaim as a top level form during file compilation
	12.15.4 Using :displaced-index-offset without :displaced-to signals an error
	12.15.5 logical-pathnames no longer allow incorrect component values
	12.15.6 Loading old data files

	12.16 Documentation changes
	12.16.1 New self-contained examples
	12.16.2 Removed self-contained examples

	12.17 Known Problems
	12.17.1 Problems with CAPI on GTK+
	12.17.2 Problems with LispWorks for Macintosh
	12.17.3 Problems with the LispWorks IDE on Cocoa
	12.17.4 Problems with CAPI and Graphics Ports on Cocoa

	12.18 Binary Incompatibility

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Non-alaphanumerics

