Foreign Language Interface User
Guide and Reference Manual

Version 8.1

Copyright and Trademarks

Foreign Language I nterface User Guide and Reference Manual
Version 8.1

February 2025

Copyright © 2025 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

http://www.lispworks.com

Contents

Preface 11

1 Introduction to the FLI 12

1.1 An example of interfacing to aforeign function 12
1.2 Using the FLI to get the cursor position 13

1.3 Using the FLI to set the cursor position 15

1.4 An example of dynamic memory allocation 16

1.5 Summary 16

2 FLI Types 17

2.1 Immediate types 17
2.2 Aggregate types 19

2.3 Parameterized types 23
2.4 Encapsul ated types 23
2.5 Thevoid type 24

2.6 Summary 24

3 FLI Pointers 25

3.1 Creating and copying pointers 25
3.2 Pointer testing functions 26

3.3 Pointer dereferencing and coercing 27
3.4 An example of dynamic pointer allocation 28
3.5 More examples of alocation and pointer allocation 29

3.6 Summary 30

4 Defining foreign functions and callables 32

4.1 Foreign callables and foreign functions 32

4.2 Specifying a calling convention. 34
5 Advanced Uses of the FLI 37
5.1 Passing a string to a Windows function 37

5.2 Passing and returning strings 38
5.3 Lisp integers 47
5.4 Defining new types 48

5.5 Using DL Lswithin the LispWorks FLI 48
5.6 Incorporating a foreign module into a LispWorks image 49
5.7 Block objectsin C (foreign blocks) 50

Contents

5.8 Interfacing to graphics functions 52
5.9 Summary 52

6 Self-contained examples 53

6.1 Foreign block examples 53
6.2 Miscellaneous examples 53

7 Function, Macro and Variable Reference

align-of 54

aloca 55
allocate-dynamic-foreign-object 55
allocate-foreign-block 56
allocate-foreign-object 57
cast-integer 59

connected-modul e-pathname 59
convert-from-foreign-string 60
convert-integer-to-dynamic-foreign-object 62
convert-to-dynamic-foreign-string 62
convert-to-foreign-string 63
copy-pointer 65

decf-pointer 66

define-c-enum 67

define-c-struct 68

define-c-typedef 71

define-c-union 72
define-foreign-block-callable-type 73
define-foreign-bl ock-invoker 74
define-foreign-callable 76
define-foreign-converter 79
define-foreign-forward-reference-type 81
define-foreign-funcallable 82
define-foreign-function 83
define-foreign-pointer 87

define-foreign-type 88
define-foreign-variable 89
define-opague-pointer 91

dereference 93
disconnect-module 9
enum-symbols 95
enum-symbol -value 95
enum-symbol -value-pairs 95
enum-values 95

enum-val ue-symbol 95
fill-foreign-object 97

Contents

foreign-aref 98
foreign-array-dimensions 99
foreign-array-element-type 100
foreign-array-pointer 101
foreign-block-copy 102
foreign-block-release 103
foreign-function-pointer 104
foreign-slot-names 105
foreign-slot-offset 106
foreign-slot-pointer 107
foreign-slot-type 108
foreign-dot-value 109

foreign-symbol-defined-p 111
foreign-typed-aref 112
foreign-type-equal-p 113

foreign-type-error 114
free 115

free-foreign-block 114
free-foreign-object 115

get-embedded-module 116
get-embedded-module-data 117

incf-pointer 118

install-embedded-module 119
install-embedded-modul e-del ay-del ete 121

|ocal e-external -formats 121
make-integer-from-bytes 121
make-pointer 122

malloc 57

modul e-unresolved-symbols 124
null-pointer 124

null-pointer-p 125
pointer-address 126

pointer-element-size 127
pointer-element-type 128
pointer-element-type-p 129

pointer-eq 130
pointerp 131

poi nter-pointer-type 132
print-collected-template-info 132
print-foreign-modules 133
register-module 134
replace-foreign-array 137
replace-foreign-object 140

set-locale 141

Contents

set-locale-encodings 142
setup-embedded-module 143
size-of 143
start-collecting-template-info 144

* use-sse2-for-ext-vector-type* 145
valid-foreign-type-p 146
with-coerced-pointer 146
with-dynamic-foreign-objects 148
with-dynamic-lisp-array-pointer 150
with-foreign-block 152
with-foreign-dots 153
with-foreign-string 154
with-integer-bytes 156
with-local-foreign-block 156

8 Type Reference 158

:bool 158

:boolean 158

:byte 159

‘c-array 160

:char 161

:const 162

:double 162
:double-complex 163

:ef-mb-string 163
-ef-wc-string 164

:enum 165
:enumeration 165
fixnum 166

:float 166
:float-complex 167
:foreign-array 167
foreign-block-pointer 168
:function 169
[int16 170

;int32 170

;int64 170

;int8 170

iint 171
:int-boolean 171
;intmax 170

‘intptr 170

lisp-array 172
:lisp-doubl e-float 174

Contents

lisp-float 174
lisp-simple-1d-array 175
lisp-single-float 175

:long 176
:long-long 177
:one-of 177
:pointer 178

‘ptr 178

.ptrdiff-t 179
:reference 179
.reference-pass 180
:reference-return 181
rel eased-foreign-block-pointer 182
:short 182

:sighed 183

Sizet 184

‘ssize-t 184

‘struct 185

time-t 186

:uint16 186

:uint32 186

:uint64 186

:uint8 186

:uintmax 186
:uintptr 186

:union 187
:unsigned 188
vector-charl6 189
vector-char2 189
vector-char3 189
vector-char32 189
vector-char4 189
vector-char8 189

vector-double? 190
vector-double3 190

vector-doubled 191
vector-double8 191
vector-float16 190
vector-float2 190
vector-float3 190
vector-float4 190
vector-float8 190
vector-int16 190

vector-int2 190

Contents

vector-int3 190
vector-int4 190
vector-int8 190
vector-longl 190
vector-long2 190
vector-long3 190
vector-long4 190
vector-long8 190
vector-short16 190
vector-short2 189
vector-short3 189
vector-short32 190
vector-short4 190
vector-short8 190
vector-ucharl6 189
vector-uchar2 189
vector-uchar3 189
vector-uchar32 189
vector-uchar4 189
vector-uchar8 189
vector-uint16 190
vector-uint2 190
vector-uint3 190
vector-uint4 190
vector-uint8 190
vector-ulongl 190
vector-ulong2 190
vector-ulong3 190
vector-ulong4 190
vector-ulong8 190
vector-ushort16 190
vector-ushort2 190
vector-ushort3 190
vector-ushort32 190
vector-ushort4 190
vector-ushort8 190
:void 193

:volatile 193
:wchar-t 194
‘wrapper 194

9 The Foreign Parser

9.1 Introduction

196

9.2 Loading the Foreign Parser

196

196

Contents

9.3 Using the Foreign Parser 196
9.4 Using the LispWorks Editor 198
9.5 Foreign Parser Reference 198

* preprocessor* 198

* preprocessor-format-string* 199

* preprocessor-include-path* 199

* preprocessor-options* 200
process-foreign-file 200

Glossary 203

Index

10

Preface

This manual documents the Foreign Language Interface (FLI), which provides atoolkit for the devel opment of interfaces
between Common Lisp and other programming languages, and supersedes the Foreign Function Interface (FFI).

The manual is divided into three sections: a user guide to the FLI which includes illustrative examples indicating how to use
the FLI for avariety of purposes, areference section providing complete details of the functions, macros, variables and types
that make up the FLI, and a guide to the Foreign Parser.

The user guide section starts by describing the ideas behind the FLI, followed by afew simple examples presenting some of
the more commonly used features of the FLI. The next chapter explains the existing type system, and includes examples
showing how to define new types. Thisisfollowed by chapters explaining the FLI implementation of pointers and some of
the more advanced topics. Finally, 6 Self-contained examples enumerates rel evant example Lisp source files which are
available in the LispWorks library.

The reference section consists of a chapter documenting the functions and macros that constitute the FLI, and a chapter
documenting the FL 1 variables and types.

The Foreign Parser section describes a helper tool for generating FLI definitions from a C header file.

Viewing example files

This manual refersto example filesin the LispWorks library viaa Lisp form like this:

(example-edit-file "fli/foreign-callabl e-exanple")

These examples are Lisp source filesin your LispWorks installation under | i b/ 8- 1- 0- 0/ exanpl es/ . You can simply
evaluate the given form to view the example sourcefile.

Example files contain instructions about how to use them at the start of thefile.

The examplesfiles are in aread-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
to write afadl file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy thefile
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

11

1 Introduction to the FL I

The Foreign Language Interface (FLI) is an extension to LispWorks which allows you to call functions written in aforeign
language from LispWorks, and to call Lisp functions from aforeign language. The FLI currently supports C (and therefore
also the Win32 API for Microsoft Windows users).

The main problem in interfacing different languagesis that they usually have different type systems, which makesit difficult
to pass data from one to the other. The FLI solves the problem of interfacing Lisp with C. It consists of FLI types that have
obvious parallels to the C types and structures, and FLI functions that allow LispWorks to define new FLI types and set their
values. The FLI also contains functions for passing FLI objectsto C, and functions for receiving data from C.

To interface to a C++ program from LispWorks, define C stubs which call your C++ entry points, as described in 5.5.2 Using
C++ DLLs. UsetheFLI to interface to these C stubs.

1.1 An example of interfacing to a foreign function

The following example shows how to use the FLI to call a C function. The function to interface with,
Fahr enhei t ToCel si us, takes one integer as its argument (the temperature in Fahrenheit) and returns the result asasingle
float (the temperature in Celsius).

The example consists of three stages: defining aforeign language interface to the C function, loading the foreign code into
the Lisp image, and calling the C function to obtain the results.
1.1.1 Defining the FLI function

The FLI providesthe macro def i ne- f or ei gn- f unct i on for creating interfaces to foreign functions. It takes the name of
the function you wish to interface to, the argument types the function accepts, and the result type the function returns.

Given the following C declaration to Fahr enhei t ToCel si us:

fl oat FahrenheitToCel sius(int);

The FLI interface is as follows:

(fli:define-foreign-function
(fahrenheit-to-cel sius "FahrenheitToCel sius" :source)
((fahrenheit :int))
:result-type :float
;1 anguage :ansi-c

)

The first argument to def i ne- f or ei gn- f unct i on declaresthat f ahr enhei t -t o- cel si us isthe name of the Lisp
function that is generated to interface with the C function Fahr enhei t ToCel si us. The: sour ce keyword isadirective to
defi ne-foreign-function that Fahr enhei t ToCel si us isthe name of the C function as seen in the source files. On
some platforms the actual symbol name available in the foreign object file we are interfacing with could include character
prefixessuchas". " and"_", and so the: sour ce keyword encoding allows you to write cross-platform portable foreign

language interfaces.

non

The second argument to def i ne-f or ei gn-function, ((fahrenheit :int)),istheargument list for the foreign
function. In this case, only one argument isrequired. The first part of each argument descriptor is the lambda argument

12

1 Introduction to the FLI

name. Therest of the argument describes the type of argument we are trying to interface to and how the conversion from Lisp
to Cisperformed. Inthiscasetheforeigntype: i nt specifiesthat we are interfacing between aLisp integer and a C type

int".

The: resul t -t ype keyword tells us that the conversion required between the C function and Lisp uses the foreign type
: fl oat . ThistellsLisp that C will return aresult of type "float", which needs to be converted to a Lisp single-float.

The final keyword argument, : | anguage, specifies which language the foreign function was written in. In this case the
example uses ANSI C. This keyword determines how single-floating point values are passed to and returned from C
functions as described for def i ne- f or ei gn-f uncti on.

1.1.2 Loading foreign code

Once an interface has been created, the object code defining those functions (and indeed any variables) must be made
available to LispWorks.

LispWorks for Windows can load Windows Dynamic Link Libraries (. DLL files).

LispWorks for Linux, LispWorks for x86/x64 Solaris and LispWorks for FreeBSD can load shared libraries (typically . so
files).

LispWorks for Macintosh can load Mach-O dynamically-linked shared libraries (typically . dyl i b files).
Throughout this manual we shall refer to these dynamic librariesas DLLSs.

On all platformsthe function r egi st er - nodul e isthe main LispWorks interface to DLL files. It is used to specify which
DL Lsarelooked up when searching for foreign symbols. Here are example forms to register a connectionto aDLL.

On Windows:

(fli:register-nmdule "MYDLL. DLL")
On Linux:

(fli:register-nodule "nylib.so")
On macOS:

(fli:register-nodule "nylib.dylib")

Note: It isaso possibleto embed aDLL inthe Lispimage. See 5.6 I ncorpor ating a foreign moduleinto a LispWorks
image.

1.1.3 Calling foreign code

Calling the foreign code is the simplest part of using the FLI. The interface to the C function, defined using
defi ne-foreign-function,iscaledlikeany other Lisp function. In our example, thef ahr enhei t -t o- cel si us
function takes the temperature in Fahrenheit asits only argument, and returns the temperature in Celsius.

1.2 Using the FLI to get the cursor position

Note: Therest of the examplesin this chapter only work in LispWorks for Windows.

The following example shows how to use the FLI to call a C function in aWin32 library. The function we are going to call
returns the screen position of the mouse pointer, or cursor. The example consists of three stages: setting up the correct data

13

1 Introduction to the FLI

types to pass and receive the data, defining and calling a FLI function to call the Win32 function, and collecting the values
returned by the Win32 function to find where the cursor is.

1.2.1 Defining FLI types

The example uses the FL1 to find the position of the cursor using the Windows function Get Cur sor Pos, which has the
following C prototype:

BOCL Get Cursor Pos(LPPO NT)

The LPPA NT argument is a pointer to the PO NT structure, which has the following C definition:

typedef struct tagPO NT {
LONG x;
LONG vy;

} PO NT;

First we usethe def i ne- c- t ypedef macro to define anumber of basic types which are needed to pass datato and from the
Windows function.

(fli:define-c-typedef bool (:boolean :int))

(fli:define-c-typedef |ong :long)

This defines two types, BOOL and LONG, which are used to associate a Lisp boolean value (t or ni |) with a C boolean of type
i nt, andaLispbi gnumwithaC |l ong. These are required because the Windows function Get Cur sor Pos returns a
boolean to indicate if it has executed successfully, and the cursor's x and y positions are specified in al ong format in the

PO NT structure.

Next, we need to define a structure for the FLI which is used to get the coordinates of the cursor. These coordinates will
consist of an x and ay position. We usethe def i ne- c-t ypedef macro for this, and the resulting Lisp FLI code has obvious
parallels with the Ct agPO NT structure.

(fli:define-c-struct tagpoint

(x long)
(y long))

Thet agPQ NT structure for the FLI, corresponding to the C structure of the same name, has been defined. This now needsto
be further defined as atype for the FLI, using def i ne- c- t ypedef .

(fli:define-c-typedef point (:struct tagpoint))

Finally, a pointer type to point to the structure isrequired. It isthis FLI pointer which will be passed to the Windows function
Get Cur sor Pos, so that Get Cur sor Pos can change the x and y values of the structure pointed to.

(fli:define-c-typedef |ppoint (:pointer point))
All the required FLI types have now been defined. Although it may seem that thereis alevel of duplicity in the definitions of

the structures, pointers and types in this section, this was necessary to match the data structures of the C functions to which
the FL1 will interface. We can now move on to the definition of FLI functions to perform the interfacing.

14

http://www.lispworks.com/documentation/HyperSpec/Body/t_bignum.htm

1 Introduction to the FLI

1.2.2 Defining a FLI function

This next step usesthe def i ne- f or ei gn- f unct i on macro to define aFLI function, or interface function, to be used to call
the Get Cur sor Pos function. An interface function takes its arguments, converts them into a C format, calls the foreign
function, receives the return values, and converts them into a suitable Lisp format.

(fli:define-foreign-function (get-cursor-position "GetCursorPos")

((l'p-point |ppoint))
:result-type bool)

In this example, the defined FLI functionisget - cur sor - posi ti on. It takes asits argument a pointer of typel ppoi nt,
convertsthisto a C format, and calls Get Cur sor Pos. It takes the return value it receives from Get Cur sor Pos and converts
itinto the FLI bool type we defined earlier.

We have now defined all the types and functions required to get the cursor position. The next step isto allocate memory for
an instance of thet agPO NT structureusing al | ocat e-f or ei gn- obj ect . Thefollowing line of code binds| ocat i on to
apointer that points to such an instance.

(setqg location (fli:allocate-foreign-object :type 'point))
Finally, we can use our interface function get - cur sor - posi ti on to get the cursor position:

(get-cursor-position |ocation)

1.2.3 Accessing the results

The position of the cursor is now stored in aPO NT structure in memory, and | ocat i on isapointer to that location. To find
out what values are stored we usethef or ei gn- sl ot - val ue accessor, which returns the value stored in the specified field
of the structure.

(fli:foreign-slot-value |ocation 'Xx)

(fli:foreign-slot-value |ocation 'y)

1.3 Using the FLI to set the cursor position

A similar Windows function, Set Cur sor Pos, can be used to set the cursor position. The Set Cur sor Pos function takes two
LONGs. The following code defines an interface function to call Set Cur sor Pos.

(fli:define-foreign-function (set-cursor-position "SetCursorPos")
((x :int)
(y :int))
:result-type :int-bool ean)

For example, the cursor position can now be set to be near the top left corner by simply using the following command:

(set-cursor-position 20 20)

For amore extravagant example, define and execute the following function:

(defun test-cursor ()
(dotimes (x 10)
(dotimes (d 300)
(let ((r (/ (+d (* 300 x)) 10.0)))
(set-cursor-position

15

1 Introduction to the FLI

(+ 300 (floor (* r (cos (/ (* d pi) 150
(+ 300 (floor (* r (sin (/ (* d pi) 150
)))))

0)))))
0)))))
(test-cursor)

1.4 An example of dynamic memory allocation

In the previous example our defined interface function get - cur sor - posi ti on used the function

al | ocat e-f or ei gn- obj ect to alocate memory for an instance of a PO NT structure. This memory is now reserved, with
apointer to its location bound to the variable | ocat i on. More detailed information on pointersis availablein 3 FLI
Pointers. To free the memory associated with the foreign object requires the use of the function f r ee- f or ei gn- obj ect .

(fli:free-foreign-object |ocation)

There are other methods for dealing with the question of memory management. The following example definesaLisp
function that returns the x and y coordinates of the cursor without permanently tying up memory for structures that are only
used once.

(defun current-cursor-position ()
(fli:with-dynan c-foreign-objects ()
(let ((Ippoint (fli:allocate-dynam c-foreign-object
:pointer-type 'l ppoint)))
(if (get-cursor-position | ppoint)
(values t (fli:foreign-slot-value |ppoint 'x)
(fli:foreign-slot-value |ppoint "y))
(values nil 0 0)))))

On calling current - cur sor - posi t i on the following happens:

1. Themacrowi t h- dynani c- f or ei gn- obj ect s iscalled, which ensures that the lifetime of any allocated objectsis
within the scope of the code specified in its body.

2. Thefunction al | ocat e- dynani c-f or ei gn- obj ect iscalled to create an instance of the relevant data structure
required to get the cursor position. Refer to it using thel ppoi nt pointer.

3. The previoudly defined foreign function get - cur sor - posi ti on iscaled with | ppoi nt .

4. Provided the call to Get Cur sor Pos was successful the function f or ei gn- sl ot - val ue iscalled twice, onceto return
the value in the x dot and again to return the value in they dot. If the call was unsuccessful then0 0 ni | isreturned.

1.5 Summary

In this chapter an introduction to some of the FLI functions and types was presented. Some examples demonstrating how to
interface LispWorks with Windows and C functions were presented. The first example involved defining aforeign function
using def i ne-f or ei gn- f uncti on to call aC function that converts between Fahrenheit and Celsius. The second involved
setting up foreign types, using the FLI macrosdef i ne- c-t ypedef and defi ne-c- struct, and defining aforeign
function using the FLI macro def i ne- f or ei gn- f unct i on, with which to obtain data from the Windows function

Get Cur sor Pos. Thethird example consisted of defining aforeign function to pass data to the Windows function

Set Cur sor Pos. A further example illustrated how to manage the allocation of memory for creating instances of foreign
objects more carefully using the FLI macro wi t h- dynani ¢- f or ei gn- obj ect s.

16

2 FLI Types

A central aspect of the FLI isimplementation of foreign language types. FLI variables, function arguments and temporary
objects have predictable properties and structures which are analogous to the properties and structures of the typesfound in
C. The FLI can trandate Lisp data objectsinto FLI data objects, which are then passed to the foreign language, such as C.
Similarly, data can be passed from C or the Windows functions to the FLI, and then translated into a suitable Lisp form. The
FLI types can therefore best be seen as an intermediate stage in the passing of data between Lisp and other languages.

Here are some of the features and sorts of foreign types:

» Consistency — Foreign types behave in a consistent and predictable manner. There is only one definition for any given
foreign type.

* Parameterized types — these can be created using adef t ype-like syntax. The macro def i ne- f or ei gn-t ype
provides a simple mechanism for creating parameterized types.

» Encapsulated types — the ability to define a new foreign type as an extension to an existing type definition is provided.
All types are converters between Lisp and the foreign language. New types can be defined to add an extralevel of
conversion around an existing type. The macro def i ne- f or ei gn- convert er and the foreign type: wr apper provide
this functionality.

» Generalized accessors — the FLI does not create named accessors. Instead, several generalized accessors use
information stored within the foreign type in order to access the foreign object. These accessors are
f orei gn-sl ot -val ue, f orei gn- aref andder ef er ence. This makesit possible to handle type definitions
corresponding to C types defined using unnamed structures, as we do not rely on specialized accessors for the given type.
Also, thereisf or ei gn-t yped- ar ef for efficient accessin compiled code.

» Documentation for types — foreign type definitions can include documentation strings.

 Specialized type constructors — to make the definition of the Lisp to C interfaces even easier several type constructor
macros are provided to mimic the C type constructorst ypedef , enum st r uct , and uni on. The new FLI constructors
aredefi ne- c-t ypedef, defi ne- c- enum defi ne-c- struct and defi ne-c-uni on. Note that the equivalent
foreign types for most standard C types are already available within the FLI.

* Querying and testing functions — to get the byte size of aforeigntype, usesi ze- of . To test for equivalence of foreign
types, usef or ei gn-t ype- equal - p.

There are two fundamental sorts of FLI types. immediate and aggregate. |mmediate types, which correspond to the C
fundamental types, are so called because they are basic data types such as integers, booleans and bytes which have a direct
representation in the computer memory. Aggregate types, which correspond to the C derived types, consist of a combination
of immediate types, and possibly of smaller aggregate types. Examples of aggregate types are arrays and structures. Any user
-defined type is an aggregate type.

2.1 Immediate types

The immediate types are the basic types used by the FLI to convert between Lisp and aforeign language.

The immediate types of the FLI are: bool , : bool ean, : byt e, : char, : const, : doubl e, : doubl e- conpl ex, : enum
.float,:float-conplex,:int,:int-boolean,:lisp-double-float,:lisp-float,:lisp-single-float,
:l ong, : pointer, :short, :signedand: unsi gned. For details on each immediate type, see the relevant reference
entry.

17

http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm

2 FLI Types

2.1.1 Integral types

Integral types are the FLI types that represent integers. They consist of the following: :int, :byte,:long,:short,
: si gned, : unsi gned and : enum along with integer types converting to types with particular sizes defined by 1SO C99
suchas:int8,:uint64and:intnax.

Integral types can be combined in alist for readability and compatibility purposes with the foreign language, although when
translated to Lisp such combinations are usually returned asalLispi nt eger, or af i xnumfor byte sized combinations. For
example, aC unsi gned | ong can berepresented inthe FLI asan (: unsi gned : 1 ong).

2.1.2 Floating point types

The FLI provides severa different immediate types for the representation of floating point numbers. They consist of the
following: : fl oat, : doubl e, :lisp-double-float,:lisp-float,and:lisp-single-float. Thefloating typesall
associate equivalent Lisp and C types, except the: | i sp- f | oat , which can take a modifier to cause an association between
different floating types. A : | i sp-fl oat associatesalispfl oat withaCfl oat by default, but a declaration of
(:lisp-float :double) correspondstoaC doubl e, for example.

Note: besuretouse: | anguage : ansi - ¢ when passing float arguments to and from C using
defi ne-foreign-function andsoon.

2.1.3 Complex number types

The FLI provides two immediate types for the representation of complex numbers, named : f | oat - conpl ex and
: doubl e- conpl ex, which correspond to the C typesf | oat conpl ex and doubl e conpl ex respectively.

2.1.4 Character types

The FLI providesthe: char typetointerfaceaLisp char act er withaCchar.

2.1.5 Boolean types

The FLI provides boolean typesto interface a Lisp boolean value (t or ni |) with aC integer (0 corresponding to ni | , and
any other value corresponding to t). Because C integers have various different sizes and C APIs use booleansin various
different sizes, there are three FLI types for booleans as follows.

The: bool type associates a Lisp boolean withaC99 Bool (or bool when the stdbool.h header isincluded).

The: i nt - bool ean type associates a Lisp boolean withaCi nt .

The: bool ean type alows you to specify the size of integer with an argument. For example, (: bool ean : byt e) would
associate a Lisp boolean withaC si gned char, and (: bool ean : 1 ong) would associate a Lisp boolean witha C | ong.
(: bool ean : st andar d) would associate a Lisp boolean withaC99 _Bool , like: bool . Prior to LispWorks 8.1, you
could omit the argument and it would default to : i nt, but this caused subtle bugsif the APl expected a different size of
integer. In LispWorks 8.1 and later, awarning is signalled if you omit the argument and you should check the API's
documentation to decide the correct size of integer to specify, or use: bool or: i nt - bool ean if appropriate.

2.1.6 Pointer types

Pointers are discussed in detail in 3 FL | Pointers. Further details can also be found in the reference entry for : poi nt er.

18

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

2 FLI Types

2.2 Aggregate types

Aggregate types are types such as arrays, strings and structures. The internal structure of an aggregate type is not transparent
in the way that immediate types are. For example, two structures may have the same size of 8 bytes, but one might partition
its bytes into two integers, whereas the other might be partitioned into a byte, an integer, and another byte. The FLI provides
anumber of functionsto manipulate aggregate types. A feature of aggregate typesis that they are usually accessed through
the use of pointers, rather than directly.

2.2.1 Arrays

The FLI has two predefined array types: the: c- arr ay type, which correspondsto C arrays, and the: f or ei gn- arr ay
type. The two types are the same in all aspects but one: if you attempt to passa: c- ar r ay by value through aforeign
function, the starting address of the array iswhat is actually passed, whereasif you attempt to passa: f orei gn-array in
this manner, an error israised.

For examples on the use of FLI arraysreferto: c-array and: f or ei gn- arr ay in 8 Type Reference.

2.2.2 Strings

The FLI providestwo foreign typesto interface Lisp and C strings, : ef -we-string and: ef - nb-stri ng.

The: ef - mb- st ri ng converts between a Lisp string and an external format C multi-byte string. A maximum number of
bytes must be given as alimit for the string size.

The: ef - we- st ri ng converts between a Lisp string and an external format C wide character string. A maximum number of
characters must be given as alimit for the string size.

For more information on converting Lisp strings to foreign language strings see the string types : ef - mb- st ri ng,
: ef -we- st ri ng, and the string functionsconvert -from f or ei gn-string, convert-to-foreign-string, and
wit h-foreign-string.

2.2.3 Structures and unions

The FLI providesthe: st ruct and: uni on typesto interface Lisp objects with the C st r uct and uni on types.

To define types to interface with C structures, the FLI macro def i ne- c- st r uct isprovided. Inthe next exampleit is used
to defineaFLI structure, t agpoi nt :

(fli:define-c-struct tagpoint
(x :1ong)

(y :long)
(visible (:boolean :byte))

This structure would interface with the following C structure:

typedef struct tagPO NT {
LONG x;
LONG vy;
BYTE vi si bl e;

} PO NT;

The various elements of a structure are known as slots, and can be accessed using the FLI foreign dlot functions

forei gn-sl ot -nanes, forei gn-sl ot-type andf orei gn-sl ot -val ue, andthemacrowi t h-f or ei gn-sl ots. For
example, the next commands set poi nt equal to an instance of t agPO NT, and set the Lisp variable nanes equal to alist of
the names of the dots of t agPO NT.

19

2 FLI Types

(setqg point (fli:allocate-foreign-object :type 'tagpoint))
(setqg nanes (fli:foreign-slot-nanmes point))

The next command finds the type of the first element in the list nanes, and setsthe variable name- t ype equal toit.
(setqg nanme-type (fli:foreign-slot-type point (car nanes)))

Finally, the following command sets poi nt - t o equal to a pointer to the first element of poi nt , with the correct type.

(setqg point-to (fli:foreign-slot-pointer point (car nanes)
:type name-type))

The above example demonstrates some of the functions used to manipulate FLI structures. The FLI : uni on typeissimilar to
the: st ruct type, inthat the FLI dlot functions can be used to access instances of aunion. The convenience FLI function
def i ne- ¢c- uni on isalso provided for the definition of specific union types.

2.2.4 Vector types

Vector types are types that correspond to C vector types. These are handled by the C compiler in a specia way, and therefore
when you pass or return them to/from foreign code by value you must declare them correctly.

2.2.4.1 Vector type names

The names of the FLI types are designed to best match the types that are defined by Clang, which is used on macOS, iOS and
FreeBSD and is optionally available on other operating systems. For every C/Objective-C type of the form

vect or _<t ype><count >, thereisan FLI type of theformfli:vector-<scalar fli type><count>. For example,
the C/Objective-C typevect or _doubl e8 ismatched by the FLI typefli : vect or - doubl e8.

The scalar fli types and their matching Common Lisp types are:

char (signed-byte 8)
uchar (unsi gned- byte 8)
short (signed-byte 16)
ushort (unsi gned- byte 16)
i nt (signed-byte 32)
ui nt (unsi gned- byte 32)
| ong (signed-byte 64)
ul ong (unsi gned- byte 64)
fl oat si ngl e-f 1l oat

doubl e doubl e-f 1 oat

The count can be 2, 3, 4, 8, 16 (for elements of 32 bits or less) or 32 (for elements of 16 bits or less). The restrictions mean
that the maximum size of avector is 64 bytes and the maximum count is 32.

Note that | ong and ul ong are aways 64 bits in this context, even on 32-hit where the C type | ong is 32 hits.

The full list of types:

20

http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

2 FLI Types

vector-char2 vector-char3 vector-char4 vector-char8 vector-charl6 vector-char32

vector-uchar?2 vector-uchar3 vector-uchar4 vector-uchar8 vector-uchar16 vector-uchar 32

vector-short2 vector-short3 vector-short4 vector-short8 vector-shortl1l6 vector-short32

vector-ushort 2 vector-ushort3 vector-ushort4 vector-ushort8 vector-ushortl vector-ushort3
6 2

vector-int2 vector-int3 vector-int4 vector-int8 vector-intl6

vector-uint2 vector-uint3 vector-uint4 vector-uint8 vector-uintl6

vector-long2 vector-long3 vector-long4 vector-Ilong8

vector-ulong2 vector-ulong3 vector-ulong4 vector-ulong8

vector-float2 vector-float3 vector-float4 vector-float8 vector-floatl6

vect or - doubl e2 vect or - doubl e3 vect or - doubl e4 vect or - doubl e8

In addition, vect or -1 ongl and vect or - ul ongl are defined asimmediate 64-bit signed and unsigned integers, because
Clang defines them like that.

2.2.4.2 Vector type values

When passing an argument that is declared as any of the FLI vector types, the value needs to be a Lisp vector of the correct
length or aforeign pointer to the FLI vector type.

* Forvect or - doubl e<count > and vect or - f | oat <count >, the Lisp vector must either have element type
doubl e-f 1 oat orsi ngl e-fl oat, or have element typet and contain elements of typef | oat .

* For the integer vector types, the Lisp vector must either have an element type that is subtype of the element type of the
FLI vector type, or have element typet and contain elements that fit into the FLI vector.

« If aforeign pointer is passed for an argument that is declared asa FL | vector type, it must point to an object of the FLI
vector type, which must be an exact match, including being correctly signed. The vector is passed by value, not asa
pointer.

When aFLI vector typeis passed into Lisp, either because it is areturned value from aforeign function or an argument to a
foreign callable, it is automatically converted to a Lisp vector of the correct length and element type. This also occurs when
accessing avalue using f or ei gn- sl ot - val ue, f or ei gn- ar ef andder ef er ence.

2.2.4.3 Using a foreign pointer to a vector type

When you have aforeign pointer to a vector type, you can access individual elementsusing f or ei gn- ar ef , or convert the
vector into aLisp vector using der ef er ence. The reverse operations can be performed using the set f form or
f or ei gn- ar ef andder ef er ence. For example:

(let ((d4-poi (fli:allocate-foreign-object
ctype 'fli:vector-doubled)))
(setf (fli:dereference d4-poi) #(0d0 1d0 2d0 3dO0))
(format t "Coll ected val ues: ~s~%
(loop for x bel ow 4
collect (fli:foreign-aref d4-poi x)))
(setf (fli:foreign-aref d4-poi 3) -3d0)
(format t "Dereference after setf: ~s~%
(fli:dereference d4-poi)))
=>
Col | ected val ues: (0.0D0 1.0D0 2.0D0 3.0D0)
Dereference after setf: #(0.0D0 1.0D0 2.0D0 -3.0D0)

Normally there is no reason to allocate aforeign object for a vector type as in the example above. You would, however,

21

http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_float.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

2 FLI Types

encounter such a pointer if you have foreign code that calls into Lisp passing it an argument that is a pointer to a vector type,
and your Lisp code needs to set the valuesin it. Inthis case, you will need to declare the argument type as
(: poi nter vector-doubl e4) andthen set it likethis:

(fli:define-foreign-callable my-callable
((d4-poi (:pointer fli:vector-doubled)))
(let ((lisp-v4 (nmy-conpute-d4-val ues)))
(setf (fli:dereference d4-poi) lisp-v4)))

(defun ny-conput e-d4-val ues ()
(vector 3.5d0 7d0 9d23 0.1d0)))

Note that if you call afunction that takes a pointer to a vector type, you can use the FLI types: r ef er ence,
:reference-pass and: r ef erence-r et ur n to pass and return values without having to explicitly allocate aforeign
pointer. For example, if the C function ny_f unct i on takes apointer to vect or _doubl e2 and fillsit like this:

void ny_function (vector_doubl e2* d2_poi) {
(*d2_poi)[0] = 3.0
(*d2_poi)[1] = 4.0

}

thenin Lisp you can call it by:

(fli:define-foreign-function nmy-function
((d2-pol (:reference-return fli:vector-double2))))

(my-function) ; returns #(3D0 4D0)

2.2.4.4 Notes on foreign vector types
C compilers other than Clang can also define vector types in various ways.
* In GCC, they can be defined using the vect or _si ze attribute, for example, vect or _doubl e4 would be defined by:

typedef doubl e vector_doubled4 __attribute__ ((vector_size (32)));

Note that the size isin bytes, rather than an element count.

» The compiler supplied by ARM has "vector datatypes’, so for example thetypef | oat 32x4_t matches
vector-fl oat 4.

* InClang, it is possible to define vector types using the GCC syntax, OpenCL syntax, AltiVec syntax and Neon syntax.

On 32-bit x86, vector types can be passed either with or without using SSE2. The Lisp FLI definitions must pass/receive
argumentsin the same way as the C compiler that was used to compile the foreign code. On macOS, thisis always with
SSE2, so thisisnot an issue, but on other platforms (Linux, FreeBSD, Solaris) the situation is not clear. What the Lisp
definitions do is controlled by * use- sse2-f or - ext - vect or - t ype*.

When using vect or - char 2 and vect or - uchar 2 on x86_64 platforms and the C compiler is Clang or a derivative, you
need to check that you have the | atest version of the C compiler, because earlier versions of Clang compiled these types
differently from later versions. This affects macOS too because the X code C compiler is based on Clang. You can check the
version of the C compiler by executing cc - v inashell. On macOS, you need to check that you have LLVM 8.0 or later. If
you have Clang, you need to check that you have version 3.9 or later.

On macOS x86_64, the treatment of vect or _char 2 and vect or _uchar 2 changed between LLVM 6.0 and 8.0. LispWorks
is compatible with LLVM 8.0. You can check which version of LLVM you have by executing cc - v in ashell.

When a structure is passed by value and it contains one of more fields whose types are vector types, it is aso important to

22

2 FLI Types

declare the type correctly in Lisp, otherwise the wrong data may be passed. That is because the machine registers that are
used to pass such structures may be different from the registers that are used to pass seemingly equivalent structures that are
defined without vector types. Such structures are commonly used to represent matrices.

2.3 Parameterized types

Thedefine-foreign-type anddefi ne-forei gn-converter macrosallow the definition of parameterized types. For
example, assume you want to create a foreign type that matches the Lisp type unsi gned- byt e when supplied with an
argument of one of 8, 16, or 32. The following code achievesthis:

(fli:define-foreign-type foreign-unsi gned-byte (&optional (bitsize '*))
(case bitsize
(8 "(:unsigned :byte))
(16 ' (:unsigned :short))
(32 "(:unsigned :int))
(otherwi se (error "lllegal foreign type (~s ~s)"
' foreign-unsi gned-byte bitsize))))

This defines the new foreign typef or ei gn- unsi gned- byt e that can be used anywhere within the FLI as one of:
e (foreign-unsigned-byte 8)
e (foreign-unsigned-byte 16)
e (foreign-unsigned-byte 32)

Specifying anything else returns an error.

2.4 Encapsulated types

With earlier version of the foreign function interface it was not possible to create new foreign types that encapsulated the
functionality of existing types. The only way in which types could be abstracted was to create "wrapper" functions that
filtered the uses of a given type. The FLI contains the ability to encapsulate foreign types, along with the ability to create
parameterized types. This enables you to easily create more advanced and powerful type definitions.

2.4.1 Passing Lisp objects to C

There are occasions when it is necessary to pass Lisp object references through to C and then back into Lisp again. An
example of thisisthe need to specify Lisp arguments for a GUI action callback.

Using either the foreign type : wr apper or the macro def i ne- f or ei gn- conver t er anew foreign type can be created that
wraps an extralevel of conversion around the Lisp to C or C to Lisp process.

2.4.2 An example

For example, let us assume that we want to pass Lisp object handles through to C and then back to Lisp again. Passing C a
pointer to the Lisp object is not sufficient, as the Lisp object might be moved at any time, for example due to garbage
collection. Instead, we could assign each Lisp object to be passed to C auniquei nt handle. Callbacksinto Lisp could then
convert the handle back into the Lisp object. This example isimplemented in two ways. using the : wr apper type and using
defi ne-foreign-converter.

The: wr apper foreign type allows the specification of automatic conversion functions between Lisp and an instance of aFLI
type. Itssignatureis:

:wr apper fli-type &ey lisp-to-foreign foreign-to-lisp

23

http://www.lispworks.com/documentation/HyperSpec/Body/t_unsgn_.htm

2 FLI Types

Using : wr apper we canwrap Lisp to C and C to Lisp converters around the converters of an existing type:

(fli:define-foreign-type |isp-object-wapper ()
"A mechani sm for passing a Lisp object handle to C
Underlying C type is Lint"
“(:wrapper :int
:lisp-to-foreign find-index-for-object
:foreign-to-lisp find-object-fromindex))

Ifthe:1isp-to-foreignand:foreign-to-Iispkeyword arguments are not specified, no extra conversion is applied to
the underlying foreign type, causing it to behave like astandard : i nt type.

See the reference entry for : wr apper for more examples.

A second method uses def i ne- f or ei gn- convert er, which is specifically designed for the creation of new converter
types (that is, types which wrap extralevels of conversion around existing types). A simple use of

defi ne-f orei gn- convert er istoonly wrap extralevels of conversion around existing Lisp to foreign and foreignto Lisp
converters.

(fli:define-foreign-converter |isp-object-wapper () object
:foreign-type :int
:lisp-to-foreign " (find-index-for-object ,object)
; object will be the Lisp Object
:foreign-to-lisp “(find-object-fromindex ,object)
; object will be the :int object
:docunentation "Foreign type for converting fromLisp objects to
i ntegers handles to Lisp objects which can then be mani pul ated in
C. Underlying foreign type : 'C int")

The definition of | i sp- obj ect - wr apper using def i ne-f or ei gn- convert er isvery similar to the definition using
: wr apper , and indeed the : wr apper type could be defined using def i ne- f or ei gn- converter.

See the reference entry for def i ne- f or ei gn- convert er for more information.

2.5 The void type

The FLI providesthe: voi d type for interfacing with the C voi d type. In accordance with ANSI C, it behaves like an
unsi gned char . In practice you will probably want to interface withaC voi d *, for which you should use the FLI
construction (: poi nter :void).

For an example of interfacing to avoi d **, see 3.5.2 Allocating a pointer to a pointer to a void.

2.6 Summary

In this chapter the various FLI data types have been examined. FLI types perform atranglation on data passed between Lisp
objects and C objects, and there are two main sorts of FLI types. immediate and aggregate. |mmediate types have asimple
representation in computer memory, and represent objects such as integers, floating point number and bytes. Aggregate types
have a more complicated structure in memory, and consist of structures, arrays, strings, and unions. Parameterized and
encapsulated types were also discussed. Finally, anumber of FLI typesthat perform specific functions, such asthe: voi d
type and the : wr apper type, were examined.

24

3 FLI Pointers

Pointers are a central part of the C type system, and because Lisp does not provide them directly, one of the core features of
the FLI isa specia pointer type that is used to represent C pointersin Lisp. This chapter discusses how to use FLI pointers by
examining some of the functions and macros which allow you to create and manipul ate them.

A FLI pointer isaFLI abject containing amemory address and a type specification. The implication is that the pointer points
to an object of the type specified at the memory address, although a pointer can point to a memory location not containing an
alocated FLI object, or an object that was allocated with a different type. Pointers can also point to other pointers, and even
to functions.

3.1 Creating and copying pointers

This section discusses how to create aFL I pointer, how to copy it, and where the memory is actually allocated.

3.1.1 Creating pointers

Many FLI functions when called return a pointer to the object created. For example, aform such as:
(fli:allocate-foreign-object :type :int)
will return something similar to the following:

#<Pointer to type :INT = #x007608A0>

ThisisaFLI pointer object, pointing to an object at address #x007608A0 of type: i nt . Note that the memory addressis
printed in hexadecimal format, but when you use the FL1 pointer functions and macros discussed in this chapter, numeric
values are interpreted as base 10 unless you use Lisp reader syntax such as #x.

To use the pointer in the future it needs to be bound to a Lisp variable. This can be done by using set g.
(setqg pointl (fli:allocate-foreign-object :type :int)
A pointer can be explicitly created, rather than being returned during the allocation of memory for aFLI object, by using

make- poi nt er . Inthe next example a pointer is made pointing to an : i nt type at the address 100, and is bound to the Lisp
variable poi nt 2.

(setqg point2 (fli:make-pointer :address 100 :type :int))

For convenience you may wish to define your own pointer types, for example:

(fli:define-foreign-pointer ny-pointer-type :int)
(setq point3

(fli:nmake-pointer :address 100
Ipointer-type 'ny-pointer-type))

poi nt 3 contains the same type and address information as poi nt 2.
A pointer which holds the address of aforeign symbol, either one which is defined in foreign code or one that is defined in

25

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

3 FLI Pointers

Lispusing def i ne-f or ei gn- cal | abl e, can be created either by make- poi nt er with: synbol - nane or
forei gn-function-pointer.

3.1.2 Copying pointers

Suppose the Lisp variable poi nt 3 isbound to aFLI pointer asin 3.1.1 Creating pointers. To make a copy of the pointer it
is not sufficient to do the following:

(setqg point4 point3)

Thissimply sets poi nt 4 to contain the same pointer object as poi nt 3. Thusif the pointer is changed using poi nt 3, a
similar change is observed when looking in poi nt 4. To create adistinct copy of the pointer object you should use

copy- poi nt er, which returns a new pointer object with the same address and type as the old one, as the following example
shows.

(setqg point5 (fli:copy-pointer point3))

3.1.3 Allocation of FLI memory

Foreign objects do take up memory. If aforeign object is no longer needed, it should be deallocated using

free-forei gn-obj ect. Thisshould be done only once for each foreign object, regardless of the number of pointer objects
that contain its address. After freeing aforeign object, any pointers or copies of pointers containing its address will give
unpredictable results if the memory is accessed.

FLI memory isallocated using mal | oc() so it comesfrom the C heap.

The FLI pointer object itself isaLisp object, but the memory it points to does not show up in the output of r oom Therefore
you must use Operating System tools to see the virtual address size of the program.

3.2 Pointer testing functions

A number of functions are provided for testing various properties of pointers. The most basic, poi nt er p, tests whether an
object isapointer. In the following examples the first expression returnsni |, because 7 is a number, and not a pointer. The
second returnst because poi nt 4 isa pointer.

(fli:pointerp 7)

(fli:pointerp point4)

The address pointed to by a pointer is obtained using poi nt er - addr ess. For example, the following expression returns the
address pointed to by poi nt 4, which was defined to be 100.

(fli:pointer-address point4)

Pointers which point to address 0 are known as null pointers. Passing the Lisp object ni | instead of a pointer resultsinni |
being treated as anull pointer. The function nul | - poi nt er - p tests whether a pointer is anull pointer or not. If the pointer
isanull pointer the valuet isreturned. We know that poi nt 4 pointsto address 100 and is therefore not anull pointer. Asa
result, the following expression returnsni | .

(fli:null-pointer-p point4)

Another testing function ispoi nt er - eq which returnst if two pointers point to the same address, and ni | if they do not. In
the previous section we created poi nt 3 by making a copy of poi nt 1, and so both point to the same address. Therefore the

26

http://www.lispworks.com/documentation/HyperSpec/Body/f_room.htm

3 FLI Pointers

following expression returnst .
(fli:pointer-eq pointl point3)

Two functions are provided to return information about the object pointed to by a pointer, poi nt er - el enent -t ype and
poi nt er - el ement - si ze. In practice, it isthe pointer which holds the information as to the type of the object at a given
memory location—the memory location itself only contains datain the form of bytes. Recall that poi nt 1 was defined in the
previous section as a pointer to an: i nt . Asaresult the following two lines of code return 4 (thesizeof an:int)and:int.

(fli:pointer-elenment-size pointl)

(fli:pointer-elenment-type pointl)

The question of pointer typesis discussed further in the next section.

3.3 Pointer dereferencing and coercing

Theder ef er ence function returns the value stored at the location held by a pointer, provided the type of the object isan
immediate type and not a structure or an aggregate type. For now, you can consider immediate data types to be the simple
typessuchas:int, : byt e, and: char, and aggregate types to consist of structures defined using : st r uct . Full details
about typesare givenin 2 FLI Types, and the use of the der ef er ence function with aggregate typesis discussed further in
5 Advanced Uses of the FL 1.

The der ef er ence function supportsthe set f function which can therefore be used to set values at the address pointed to by
the pointer. In the following example an integer is allocated and a pointer to the integer isreturned. Then der ef er ence and
set f are used to set the value of theinteger to 12. Finally, the value of the integer isreturned using der ef er ence.

(setqg point5 (fli:allocate-foreign-object :type :int))
(setf (fli:dereference point5) 12)

(fli:dereference pointbh)

The function der ef er ence hasan optional : t ype keyword which can be used to return the value pointed to by a pointer as
adifferent type. Thisisknown as coercing apointer. The default value for : t ype isthe type the pointer is specified as
pointing to. In the next example the value at poi nt 5 isreturned as a Lisp boolean even thought it wasset asan : i nt .
Because thevalue at poi nt 5isnot 0, itisreturned ast .

(fli:dereference point5 :type '(:boolean :int))

Recall that at the end of the previous section the function poi nt er - el enent - t ype was demonstrated. What followsis an
example which uses this function to clarify the issue of pointers and types.

Thefirst action consists of allocating an integer, and setting up a pointer to this integer:
(setq pointer-a (fli:allocate-foreign-object :type :int))

Now we usef | i : copy- poi nt er to make acopy of poi nt er - a, but with the type of the new pointer changed to be a
: byt e. We call this pointer poi nt er - b.

(setqg pointer-b (fli:copy-pointer pointer-a :type :byte))

We now have two pointers which point to the same memory location, but one thinks it is pointing to an : i nt , and the other
thinksit ispointing to a: byt e. Test this by using the following two commands:

27

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

3 FLI Pointers

(fli:pointer-elenment-type pointer-a)

(fli:pointer-elenment-type pointer-b)

Similar commands using poi nt er - el ement - si ze show that poi nt er - a is pointing to an element of size 4, and
poi nt er - b to an element of size 1.

So far we have seen the use of the: t ype keyword to specify how to set up or dereference a pointer to obtain valuesin the
format we want. Thereis, however, afurther level of abstraction in pointer typing which usesthe: poi nt er - t ype keyword
instead of the: t ype keyword.

The following two commands produce identical pointers, but one usesthe: t ype keyword, and the other uses the
: poi nt er -t ype keyword:

(fli:make-pointer :address 0 :type :int)

(fli:make-pointer :address O :pointer-type '(:pointer :int))

In the instance above there is no advantage in using the : poi nt er - t ype option. However, : poi nt er - t ype can be very
useful when used in combination with a defined type, as the next example shows.

Imagine you are writing a program with many statements creating pointers to a certain type, for example: byt e, and thisis
done using the: t ype keyword. If half way through coding the type to be pointed to was changed to a; char , every
individual statement would need to be changed. However, if ageneral pointer type had been defined at the start and all the
statements had used the : poi nt er - t ype keyword to refer to that particular type, only one statement would need to be
changed: theinitial definition of the pointer type. The following code illustrates this:

(fli:define-c-typedef my-pointer-type (:pointer :byte))
(fli:make-pointer :address O :pointer-type 'my-pointer-type)
(fli:make-pointer :address 100 :pointer-type 'ny-pointer-type)
The above code consists of a definition of a new pointer type, called nmy- poi nt er - t ype, which pointstoa: byt e.

Following it are one hundred lines of code using ny- poi nt er - t ype. If you decide that all the pointers made should actually
pointto a: char, only thefirst line needs to be changed, as shown below:

(fli:define-c-typedef my-point-type (:pointer :char))

The program can now be re-compiled. Theuse of : poi nt er - t ype with pointers is thus anal ogous to the use of constants
instead of absolute numbersin programming.

The function poi nt er - poi nt er - t ype returns the pointer type of aforeign pointer.

3.4 An example of dynamic pointer allocation

When a pointer is created, using make- poi nt er, or due to the allocation of aforeign object, memory is put aside to store the
details of the pointer. However, if apointer is only needed within the scope of a particular section of code, thereisaFLI
macro, wi t h- coer ced- poi nt er, which can be used to create atemporary pointer which is automatically deallocated at the
end of the code. The next example illustrates the use of this macro.

To start with, we need an object to use the temporary pointer on. The following code allocates ten consecutive integers, and
setstheir initial values.

(setf array-obj
(fli:allocate-foreign-object :type :int
:nelems 10

28

3 FLI Pointers

initial-contents
'(01234567819)))

When the ten integers are created, al | ocat e- f or ei gn- obj ect returns a pointer to the first one. The next piece of code
useswi t h- coer ced- poi nt er to create a copy of the pointer, which is then used to print out the contents of the ten integers.
At the end of the printing, the temporary pointer is automatically deallocated.

(fli:with-coerced-pointer (tenp) array-obj
(dotimes (x 10)
(print (fli:dereference tenp))
(fli:incf-pointer tenp)))

The above example also illustrates the use of thei ncf - poi nt er , which increases the address stored in a pointer by the size
of the object pointed to. Thereisasimilar function called decf - poi nt er , which decreases the address held by a pointer in a
similar fashion.

3.5 More examples of allocation and pointer allocation

Thefunctionsal | ocat e- dynani c-f or ei gn- obj ect, al | ocat e-f or ei gn- obj ect, al | oca, and nal | oc can take the
keyword arguments: t ype and : poi nt er - t ype. It isimportant to understand the difference between these two arguments.

The: t ype argument is used to specify the name of the FLI typeto allocate. Once such an object has been allocated aforeign
pointer of type (: poi nt er type) isreturned, which points to the alocated type. Without this pointer it would not be
possible to refer to the object.

The: poi nt er -t ype argument is used to specify a FLI pointer type. If it isused then the value pointer-type should be of the
form (: poi nter type) or bedefined asaFLI pointer type. The function then allocates an object of type type, and a pointer
to the object of type typeisreturned.

3.5.1 Allocating an integer

To alocate an integer in C:
(int *)malloc(sizeof (int))
You can allocate the integer from LispWorks using the : t ype argument:

(fli:allocate-foreign-object :type :int)
=> #<Pointer to type :INT = #x007E1A60>

Alternatively you can allocate the integer from LispWorks using the : poi nt er - t ype argument:

(fli:allocate-foreign-object
:pointer-type '(:pointer :int))
=> #<Pointer to type :INT = #x007E1A60>

3.5.2 Allocating a pointer to a pointer to a void

Suppose you need to call a C function that takesavoi d ** argument, defined as follows:

struct arg_struct

{

int val

H

29

3 FLI Pointers

voi d func_handl e_init(void **h)
{
struct arg_struct *handle = NULL;
handl e = (struct arg_struct *)mall oc(sizeof (struct arg_struct));
menset (handl e, 0, sizeof(struct arg_struct));
handl e->val = 12;
*h = handl e

}
With this foreign function definition:

(fli:define-foreign-function
(func-handle-init "func_handle_init"
:source)
((handle (:pointer (:pointer :void))))
:result-type :void
;1 anguage : ansi-c)

you could smply do:

(setqg handl e
(fli:allocate-foreign-object :type :pointer))

(func-handl e-init handl e)
but do not forget to aso free the pointer:

(fli:free-foreign-object handle)

Another approach isto allocate the pointer on the stack. In this case you do not need to free it explicitly:

(fli:with-dynani c-foreign-objects ((handle :pointer))
(func-handl e-init handl e))

Yet another approach is to define the foreign function like this:

(fli:define-foreign-function
(func-handle-init "func_handle_init"
:source)
((:ignore (:reference-return (:pointer :void))))
:result-type :void
;1 anguage : ansi-c)

Then call the function like this;
(func-handl e-init)

and it will return the handle. Thisworks becausethe: r ef er ence-r et ur n type allocates the temporary voi d ** within
the function and returns its contents.

3.6 Summary

In this chapter the use of FLI pointers was examined. A number of FLI functions useful for copying, creating and testing the
properties of apointer were presented. The use of the der ef er ence function for obtaining the value pointed to by a pointer
was examined, as was the coercing of a pointer—namely dereferencing a pointer to an object in a manner which returns the
value found there as a different type. Finally, an example of the use of thewi t h- coer ced- poi nt er macro was given to
illustrate the use of temporary pointers for efficient memory management.

30

3 FLI Pointers

In the next chapter some advanced topics of the FLI are examined in greater detail.

31

4 Defining foreign functions and callables

This chapter discusses how to define foreign functions and callables.

4.1 Foreign callables and foreign functions

The two main macros for interfacing LispWorks with aforeign language are def i ne- f or ei gn- cal | abl e, which definesa
body of Lisp code that can be called from the foreign language, and def i ne- f or ei gn- f unct i on which definesaLisp
function that can call functionsin aforeign language.

In 1 Introduction to the FL | we defined aforeign function for calling the Win32 function Set Cur sor Pos. The code for
this exampleis repeated here.

(fli:define-foreign-function (set-cursor-position "SetCursorPos")
((x :int)
(y :int))
:result-type :int-bool ean)

A FLI foreign function calling some C code. isaniillustration of set - cur sor - posi ti on, represented by a square, calling
the C code which constitutes Set Cur sor Pos.

A FLI foreign function calling some C code.

[y

Lisp

The next diagram, C calling a callable function in Lisp., illustrates a callable function. Whereas aforeign function consists
of aLisp function name calling some codein C, a callable function consists of Lisp code, represented by an oval in the
diagram, which can be called from C.

C calling acallable function in Lisp.

Lisp i

-

Callable functions are defined using f | i : def i ne-f or ei gn- cal | abl e, which takes asits arguments, amongst other
things, the name of the C function that will call Lisp, the arguments for the callable function, and a body of code which
makes up the callable function.

To call aLisp function from C or C++ you need to defineit usingf | i : defi ne-f orei gn-cal | abl e. Then call
fli: make- poi nt er withthe: synbol - nanme argument and pass the result to C or C++ as a function pointer.

32

4 Defining foreign functions and callables

For the purpose of creating a self-contained illustration in Lisp, the following Lisp code defines aforeign callable function
that takes the place of the Windows function Set Cur sor Pos.

(fli:define-foreign-callable ("SetCursorPos"
:result-type :int-bool ean)

((x :int) (y :int))
(capi : di spl ay- message
"The cursor position can no | onger be set"))

Supposing you had the above foreign callable defined in areal application, you would use:

(make- poi nter :synbol - nane " Set Cur sor Pos")

to create aforeign pointer which you passto foreign code so that it can call the Lisp definition of Set Cur sor Pos.

A FL1 foreign function calling a callable function. illustrates what happens when set - cur sor - posi ti on iscaled. The
foreign function set - cur sor - posi ti on (represented by the square) calls what it believes to be the Windows function

Set Cur sor Pos, but the callable function (represented by the oval), also called Set Cur sor Pos, iscalled instead. It pops up
a CAPI pane displaying the message "The cursor position can no longer be set".

A FLI foreign function calling a callable function.

Lisp C

(-

™
S

For more information on calling foreign code see def i ne-f or ei gn-f uncti on.

For more information on defining foreign callable functions see 4.1.1 Strings and foreign callables and
defi ne-foreign-callable.

For information on how to create a LispWorks DLL, see "Creating a dynamic library" in the LispWorks® User Guide and
Reference Manual.

For some complete examples of building a LispWorks DLL, then loading and calling it from foreign code, see "Delivering a
dynamic library" in the Delivery User Guide.

4.1.1 Strings and foreign callables

To interface to a C function which takes a pointer to a string form and puts a string in the memory pointed to by result,
declared like this:

voi d eval x(const char *form char *result);

you would definein Lisp:

(fli:define-foreign-function eval x
((form (:reference-pass :ef-nb-string))
(:ignore (:reference-return
(:ef-nb-string :limt 1000)))))

and call:

33

4 Defining foreign functions and callables

(evalx "(+ 2 3)")
=>
"

Now suppose instead that you want your C program to call asimilar routine in a LispWorks for Windows DLL named
"evaluator”, likethis:

{
typedef void (_stdcall *eval x_func_type)(const char *form char *result);
HI NSTANCE dI | = LoadLi brary("eval uator");
eval x_func_type eval x = (eval x_func_type) GetProcAddress(dll, "eval x");

char result[1000];
eval x("(+ 2 3)", result);
printf("%\n", result);

}
You would put thisforeign callablein your DLL built with LispWorks:

(fli:define-foreign-callable
("eval x" :calling-convention :stdcall)
((form (:reference :ef-nb-string
:lisp-to-foreign-p ni
:foreign-to-lisp-p t))

(result (:reference (:ef-nmb-string :linit 1000)
:lisp-to-foreign-p t
:foreign-to-lisp-p nil)))

(rmul tiple-value-bind (res err)
(ignore-errors (read-fromstring form)
(setq result
(if (not (fixnunp err))
(format nil "Error reading: ~a"
err)
(rmul tiple-value-bind (res err)
(ignore-errors (eval res))
(if (and (not res) err)
(format nil "Error evaluating: ~a"
err)
(princ-to-string res)))))))

Note: you could use: r ef er ence-return and: r ef er ence- pass in the foreign callable definition, but we have shown
. r ef er ence with explicit lisp-to-foreign-p and foreign-to-lisp-p arguments to emphasi se the direction of each conversion.

4.2 Specifying a calling convention.

The FLI macros such asdef i ne-f or ei gn-functi on anddef i ne-f or ei gn- cal | abl e take akeyword
:cal l'i ng- conventi on. Apart from on 32-bit Windows and on the ARM architectures, thereis only one calling
convention and in most cases you do not need to specify it.

The common case when you need to specify the calling convention is on 32-hit Windows where the default LispWorks calling
conventionis__st dcal | . Thismatches the Win32 API functions, but compilerstypically produce __cdecl by default
(which is the same as the non-Windows x86 systems).

ARM (both 32-bit and 64-bit) also has more than one calling convention, but it should be rare (in 32-bit) or extremely rare (in
64-bit) that you need to specify the convention. Note however that, on ARM, failing to specify that afunction is variadic (by
thekeyword : vari adi c- num of - f i xed) ismore likely to cause crashes than on the other architectures.

4 Defining foreign functions and callables

4.2.1 Windows 32-bit calling conventions

The Win32 API functionsin 32-bit Windows applications are compiled using the __st dcal | calling convention, but
compilersnormally use __cdecl by default. Thusif you call functions that are not part of the Win32 API from 32-bit
LispWorks then you need to check the calling convention and in most cases you need to specify it as__cdecl by passing
:cal l'ing-convention :cdecl. Tospecify __stdcal |, pass: cal | i ng-convention :stdcal |, whichisthe default
so isnot really needed.

Note that all the other LispWorks architectures, including 64-bit Windows, interpret both : cdecl and: st dcal | to mean the
default.

Since whole libraries are normally compiled with the same calling convention, it is usually convenient to define your own
defining macro that expands to the FLI defining macro and passes it the calling convention. For example, LispWorks itself
uses the following defining macro to define foreign calls to the MySQL library:

(def macro def-nysql-function (&body x)
“(dspec: def (def-nysql-function ,(car x))
(define-foreign-function , @&
:nmodul e 'mysql -library
:cal ling-convention :cdecl)))

4.2.2 ARM 32-bit calling conventions

32-bit ARM systems have two calling conventions. hard float and soft float. These calling conventions are binary
incompatible, and operating systems generally support only one or the other. Currently, Android and iOS are both soft float
but Android is now starting to support hard float code, while ARM Linux distributions are now almost always hard float, but
used to be soft float. Moreover, iOS has a calling convention which is soft, and somewhat different from the Android/old-
Linux soft float, so these are also binary incompatible.

Thus LispWorks supports 3 calling conventions:

Soft float conventions:

i0S The calling convention that is used by iOS.

soft Linux The calling convention that is used by Android, and was used by old Linux systems.
Hard float convention:

hard float The calling convention used by newer Linux systems.

When LispWorks compiles aforeign call or callable function, it (by default) generates "tri-compatible” code that can
interface with either hard float, soft Linux or iOS foreign code. At run time, the code checks an internal flag and uses the
appropriate calling convention. Theinternal flag is set to the correct value on start-up. The tri-compatible code is needed
only for functions where the calling conventions differ, and when 2 or more of the conventions need the same code
LispWorks avoids duplicating code, while remaining compatible with all 3 conventions.

Because of the tri-compatible code, LispWorks binaries (fad files) are compatible with all the conventions. The compiled
Lisp codeis also compatible with all conventions. However, LispWorks executables (including LispWorks as a shared
library) have asmall C program that starts Lisp (the "xstarter"), and thisis either hard float, soft Linux or iOS. Therefore, a
LispWorks executable can run only on one calling convention, but the code that LispWorks compiles can run on al of them.

In particular, that means that it is possible to compile and build runtimes for Android and iOS on either soft float or hard float
systems, because the runtime is created using the appropriate xstarter for the target OS.

It ispossibleto tell LispWorks to compile aforeign call or callable function for only one calling convention, by supplying the
keyword : cal | i ng- convent i on with one of these values:

35

4 Defining foreign functions and callables

i os i0S.

:hard-f | oat hard float.

:sof t-1inux soft Linux.

: andr oi d Android. Currently that isan alias to :soft-linux.
:sof t-fl oat Code that selects between : soft-linux and:i os .

All other values generate tri-compatible code.

You are only required to pass: cal | i ng- convent i on when you use alibrary with acalling convention that does not match
the calling convention of the OS. That should be rare.

Passing : cal | i ng- convent i on aso makes the code smaller and dlightly faster, but the difference is unlikely to be
significant.

Note that variadic functions (for examplepri nt f and sscanf) are aways soft float, which means that when compiling calls
to such functions it is essential to specify that they are variadic (by passing : var i adi c- num of - f i xed) to ensure that
LispWorks does not try to pass the arguments as hard float.

Compatibility note: in LispWorks 7.0, you had to pass: cal | i ng- convention :soft-fl oat for variadic functions. This
still works, but passing : vari adi c- num of - f i xed ismore correct and will make it work properly on other architectures,
(in particular 64-bit ARM).

4.2.3 ARM 64-bit calling conventions

Thereis astandard calling convention for 64-bit ARM (documented by ARM), but iOS uses adlightly different one.
Therefore, there are effectively two calling conventions: the standard one and iOS.

By default, LispWorks compiles code that sel ects which convention to use at run time. However, the difference between the
conventionsis quite minor and affects only a small number of functions, so the code is the same for most functions. Thus the
overhead is quite small and you will not normally have areason to pass: cal | i ng- convent i on for 64-bit ARM.

You can use the following values with : cal | i ng- convent i on to tell LispWorks to compile for a specific convention:
i os Compile only the iOS convention.

:standard Compile only the standard convention.

Other values are treated as the default.

Note that al the keywords used for 32-bit ARM (see 4.2.2 ARM 32-bit calling conventions), with the exception of : i os,
are treated as the default on 64-bit ARM.

4.2.4 Fastcall on 32-bit x86 platforms

On 32-bit x86 platforms, the C compilers have afastcall calling convention. In Visual C and the GNU C compiler, thisitis
specified by the __f ast cal | qudlifier. If you call aforeign function that is compiled as afastcall, you must specify the
calling convention : f ast cal | .

On other architectures, the calling convention : f ast cal | isquietly ignored, and the code produced is the same as would be
produced without it.

The calling convention : f ast cal | cannot be used in foreign callables (calls from foreign code into LispWorks).

36

5 Advanced Uses of the FLI

Note: Some of the examples in this chapter only work for LispWorks for Windows.

Thisisthefinal chapter of the user guide section of this manual. It provides a selection of examples which demonstrate some
of the more advanced uses of the FLI.

5.1 Passing a string to a Windows function

The following example shows how to define a Lisp function which calls aWin32 API function to change the title of the active
window. It demonstrates the use of def i ne-f or ei gn-functi onandwi th-foreign-stringtopassalispstringtoa
Windows function.

Thefirst step involves defining a FLI type to correspond to the Windows hwnd type, which isthe window handle type.

(fli:define-c-typedef fli-hwnd
(:unsigned :1ong))

The next step consists of the foreign function definitions. The first foreign function returns the window handle of the active
window, by calling the Windows function Get Act i veW ndow. It takes no arguments.

(fli:define-foreign-function (get-act-w ndow "GetActi veW ndow")
0
:result-type fli-hwnd
:docunentation "Returns the wi ndow handl e of the active w ndow
for the current thread. If no active windowis
associated with the current thread then it returns 0.")

The next foreign function uses the Windows function Set W ndowText to set the text of the active window titlebar. It takesa
window handle and a pointer to a FLI string asits arguments.

(fli:define-foreign-function (set-wi n-text "SetWndowText" :dbcs)
((hwnd fli-hwnd)
(I pstring :pointer))
:result-type :int-bool ean
:docunentation "Sets the text of the window titlebar.")

Theforeign function set - wi n-t ext returns a boolean to indicate whether it has successfully changed the title bar.

The required FLI data types and foreign functions have been defined. What is now required is a Lisp function which uses
them to change the titlebar of the active window. The next function does this:

(defun set-active-w ndowtext (newtext)
(let ((active-wi ndow (get-act-w ndow))
(external -format (if (string= (software-type)
"W ndows NT")
> uni code
rascii)))
(unl ess (zerop active-w ndow)
(fli:with-foreign-string (newptr el enment-count byte-count
sexternal -format external -format)
new-t ext

(decl are (ignore el enent-count byte-count))

37

5 Advanced Uses of the FLI

(set-win-text active-w ndow newptr)))))

Thefunction set - acti ve- wi ndow t ext takesaLisp string asits argument, and does the following:

1. It callsthe foreign function get - act - wi ndowto set the variable act i ve- wi ndowto be the handle of the active
window. If no window is active, thiswill be zero.

2. Thevariable ext er nal - f or mat issetto be: uni code if the operating system is Windows NT or alater system based
on it (which expects strings to be passed to it in Unicode format), otherwiseitissettobe: asci i .

3. If act i ve- wi ndowis zero, then thereis no active window, and the function terminates, returning ni | .

4. If acti ve- wi ndowisnot zero, then it contains awindow handle, and the following happens:

The function useswi t h- f or ei gn- st ri ng to convert the Lisp string argument of the function into aFLI string, and a
pointer to the FLI string is allocated, ready to be handed to the foreign function set - wi n-t ext that we defined earlier.
The encoding of the string isext er nal - f or mat , which is the encoding suitable for the operating system running on the
computer. Once the window title has been set, wi t h- f or ei gn- st ri ng automatically deallocates the memory that was
allocated for the FLI string and the pointer. The function then terminates, returning t .

You can test that thisiswhat happens by entering the command:

(set-active-windowtext "A newtitle for the active w ndow")

Seewi t h-f or ei gn- st ri ng, for more details on the use of foreign strings.

5.2 Passing and returning strings

5.2.1 Use of Reference Arguments

Lisp and C cannot in general share memory so the FLI needs to make a copied of strings, either temporarily when passing
them to C or as new Lisp objects when returning them.

5.2.2 Passing a string

Useof the: r ef er ence- pass typein this example converts the Lisp string to aforeign string on calling, but does not
convert the string back again on return.

Hereisthe C code for the example. It uses the argument string but returns an integer.

Windows version:

#i ncl ude <string. h>
#i ncl ude <ctype. h>

__decl spec(dll export) int _ _cdecl count_upper(const char *string)
{

int count;

int |en;

int ii;

count = 0

len = strlen(string);

for (ii =0; ii <len ; ii++)

if (isupper(string[ii]))
count ++;
return count;

38

5 Advanced Uses of the FLI

Non-Windows version:

#incl ude <string. h>
#i ncl ude <ctype. h>

i nt count _upper (const char *string)
{ .

int count;

int |en;

int ii;

count = 0

len = strlen(string);

for (ii =0; ii <len ; ii++)

if (isupper(string[ii]))
count ++;
return count;

Hereisthe foreign function definition using : r ef er ence- pass:

(fli:define-foreign-function (count-upper "count_upper" :source)
((string (:reference-pass :ef-nb-string)))
cresult-type :int
:language :c
:cal l'ing-convention :cdecl)

(count -upper "ABCdef")

=>
3

5.2.3 Returning a string via a buffer

In this example no Lisp string is needed when calling. The: r ef er ence- r et ur n type converts aforeign string of lowercase
ASCII charactersto aLisp string on return. Here isthe C code for the example.

Windows version:

#i ncl ude <string. h>
#i ncl ude <stdlib. h>

__decl spec(dl |l export) void __cdecl randomstring(int length, char *string)

{ . P
int ii;
for (ii =0; ii <length ; ii++)
string[ii] = 97 + rand() % 26
string[length] = 0;
}

Non-Windows version:

#i ncl ude <string. h>
#i ncl ude <stdlib. h>

void random string(int length, char *string)

{ . ..
int ii;
for (ii =0; ii <length ; ii++)
string[ii] =97 + rand() % 26
string[length] = O;
}

39

5 Advanced Uses of the FLI

In thisforeign function definition the : r ef er ence- r et ur n type must specify asize, since memory is allocated for it before
calling the C function. Note alsotheuseof : | anbda- | i st so that the caller does nhot have to pass a dummy argument for
thereturned string, and : resul t -t ype ni | corresponding to the void declaration of the C function.

(fli:define-foreign-function (randomstring
"random string"
1 source)
((length :int)
(return-string (:reference-return
(:ef-nmb-string
climt 256))))
‘result-type ni
:lambda-1ist (length &ux return-string)
:cal l'i ng-convention :cdecl)

(randomstring 3)
=>
"uxw'

(randomstring 6)
=
"fnfozv"

5.2.4 Modifying a string in a C function

Here isthe C code for the example. On return, the argument string has been modified (the code assumes there is enough
space after the string for the extra characters).

Windows version:

#i ncl ude <stdio. h>
#include <string. h>

__decl spec(dll export) void __cdecl nodify(char *string) {
char tenp[256];
sprintf(temp, "'%' nodified in a C function", string);

strcpy(string, tenp);
}

Non-Windows version:

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

voi d nodi fy(char *string) {
char tenp[256];
sprintf(tenmp, "'%' nodified in a C function", string);

strcpy(string, tenp);
}

Here are three approaches to calling nodi f y from Lisp:

1. Use afixed size buffer indef i ne-f or ei gn-f uncti on. Thisusesthe: r ef er ence type, which automatically allocates
atemporary foreign object, fillsit with data converted from the Lisp object, passes a pointer to C and converts the datain the
foreign object back into a new Lisp object on return. Note that the Lisp object passed to the function is not modified. Thisis
the neatest way, provided you can bound the size of the result string at compile-time.

(fli:define-foreign-function (dff-nodify "nodify" :source)
((string (:reference (:ef-nmb-string :linmt 256))))
:cal l'i ng-convention :cdecl)

40

5 Advanced Uses of the FLI

(dff-nmodify "Lisp String")
=>
"'*Lisp String' nodified in a C function"

2. Use afixed size buffer fromwi t h- dynani c- f or ei gn- obj ect s. Inthiscase, we do most of the conversion explicitly
and define the foreign function astaking a: poi nt er argument. Thisisagood approach if you don't know the maximum
length when the function is defined, but will know it at compile-time for each call to the function.

(fli:define-foreign-function (wdfo-nodify "nodify" :source)
((string :pointer))
:cal ling-convention :cdecl)

(fli:with-dynam c-forei gn-objects
((c-string (:ef-nb-string :limt 256)
cinitial-element "Lisp String"))
(wdf o-nodi fy c-string)
(fli:convert-fromforeign-string c-string))
=>
"'*Lisp String' nodified in a C function"

3. With avariable size buffer from al | ocat e- dynani c-f or ei gn- obj ect . Inthiscase, we do all of the conversion
explicitly because we need to make an array of the right size, which is only known after the foreign string has been created
(the extra 100 bytes are to alow for what the C function inserts into the string). Note that, in order to support arbitrary
external formats, the code makes no assumptions about the length of the temporary array being the same as the length of the
Lisp string: it does the conversion first using wi t h- f or ei gn- st ri ng, which works out the required number of bytes. The
use of wi t h- dynanmi c- f or ei gn- obj ect s provides adynamic scope for call to al | ocat e- dynani c-f or ei gn- obj ect -
on exit, the foreign object will be freed automatically.

(fli:with-foreign-string (tenp el enent-count byte-count)
"Lisp String"
(fli:with-dynani c-foreign-objects ()
(let ((c-string (fli:allocate-dynanic-foreign-object
:type ' (:unsigned :byte)
:nelenms (+ byte-count 100))))
(fli:replace-foreign-object c-string tenp :nelenms byte-count)
(wdf o-nodi fy c-string)
(fli:convert-fromforeign-string c-string))))

5.2.5 Calling a C function that takes an array of strings

Suppose you have a C function declared like this:

extern "C' void foo(const char** StringArray);

To call thisfrom Lisp you need to first allocate the foreign memory for each piece of data, that isthe array itself and each
string. Assuming that f oo does not capture any of the pointers, you can give this memory dynamic extent as follows:

(defun convert-to-dynanic-foreign-array (strings)
(let* ((count (length strings))
(array
(fli:allocate-foreign-object

:nelens (1+ count) ; assunme NULL term nated
:type '(:pointer :char))))

(dotinmes (index count)

(setf (fli:dereference array :index index)
(fli:convert-to-dynam c-foreign-string
(elt strings index))))
(setf (fli:dereference array :index count) nil)

41

5 Advanced Uses of the FLI

array))

(fli:define-foreign-function (% oo foo)
((string-array (:pointer (:pointer :char)))))

(defun foo (strings)
(fli:with-dynanmc-foreign-objects () ; provide a dynam c scope
(% oo (convert-to-dynamic-foreign-array strings))))

Hereisasimilar example converting Lisp stringsto ** char or *char [] which by default allocates using mal | oc (the value
: stati c for the allocation argument):

(defun convert-strings-to-foreign-array (strings &ey
(allocation :static))
(let* ((count (length strings))
(array (fli:allocate-foreign-object
:type '(:pointer (:unsigned :char))
:nelens (1+ count)
cinitial-element nil
;allocation allocation)))
(loop for index fromO
for string in strings
do (setf (fli:dereference array :index index)
(fli:convert-to-foreign-string
string
:external -format :utf-8
;allocation allocation)))
array))

If you call it frequently, then you will probably want to free the array (and the stringsinsideit). Alternatively, you can give
the array and its strings dynamic scope if the foreign side does not keep a pointer to the data, like this:

(fli:with-dynani c-foreign-objects ()
(let ((array (convert-strings-to-foreign-array
strings :allocation :dynanic)))
(% o0 array)))

5.2.6 Foreign string encodings

The: ef - nb- st ri ng typeis capable of converting between the internal encoding of LispWorks strings (Unicode) and
various encodings that may be expected by the foreign code. The encoding on the foreign side is specified by the

: external -format argument, which takes an External Format specification.. See the Lisp\Works® User Guide and
Reference Manual for a more detailed description of external formats.

Consider avariant of the last example where the returned string contains characters beyond the ASCII range.

Windows version:

#include <string. h>
#i nclude <stdlib. h>

__decl spec(dll export) void __cdecl randomstring2(int |ength, char *string)

{ . ..
int ii;
for (ii =0; ii <length ; ii++)
string[ii] = 225 + rand() % 26;
string[length] = 0;
}

Non-Windows version:

42

5 Advanced Uses of the FLI

#include <string. h>
#i nclude <stdlib. h>

voi d random string2(int length, char *string)

{ . ..
int ii;
for (ii =0; ii <length ; ii++)
string[ii] = 225 + rand() % 26;
string[length] = 0;
}

A foreign function defined liker andom st ri ng above is inadequate by itself here because the default external format is that
for the default C locale, ASCII. Thiswill signal error when it encounters a non-ASClI character code. There are two
approaches to handling non-ASCI| characters.

1. Pass an appropriate external format, in thiscaseitisLatin-1:

(fli:define-foreign-function (randomstring2
"random string2"
> source)

((length :int)
(return-string (:reference-return
(:ef-mb-string
climt 256
cexternal -format :latin-1))))
‘result-type ni
:lambda-1ist (length &ux return-string)
:cal l'i ng-convention :cdecl)

(randomstring2 3)
=

n c\)adu

(randomstring2 6)
=
"oagcca”

2. Set thelocale, using set - | ocal e. This setsthe C locale and switches the FLI to use an appropriate default wherever an
external-format argument is accepted.

(fli:define-foreign-function (randomstring
"random string2"
:source)
((length :int)
(return-string (:reference-return
(:ef-nmb-string
climt 256))))
‘result-type ni
:lambda-1ist (length &ux return-string)
:cal l'i ng-convention :cdecl)

On a Windows system with current Code Page for Western European languages.

(fli:set-locale)
=>
(wi n32: code-page :id 1252)

On a Non-Windows system with a Latin-1/1SO8859-1 default locale:

(fli:set-locale)
=>
clatin-1

5 Advanced Uses of the FLI

After the default external-format has been switched:

(randomstring 6)
=
" oeficed”

If you do not actually wish to set the C locale, you can call set - | ocal e- encodi ngs which merely switchesthe FLI to use
the specified external formats where an external-format argument is accepted.

5.2.7 Foreign string line terminators

You can specify the line terminator in foreign string conversionsviathe: eol - st yl e parameter in the external-format
argument.

By default foreign strings are assumed to have lines terminated according to platform conventions. Linefeed on Non-
Windows systems, and Carriage-Return followed by Linefeed on Windows. That is, eol-style defaultsto: 1 f and: crl f
respectively. This meansthat unless you take care to specify the external format : eol - st yl e parameter, you may get
unexpected string length when returning a Lisp string.

Consider the following C code example on Windows:

#include <string. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

__decl spec(dll export) int __cdecl crif_string(int Iength, char *string)
{
int ii;
int jj;
for (ii =0; ii <length ; ii++)
if (ii %3 ==1) {
string[ii] = 10
printf("%\n", ii)
} else
if ((ii >0) & (ii %3 ==0)) {
string[ii] = 13
printf("%\n", ii)
} else
if (ii %3 ==2) {
string[ii] = 97 + rand() % 26
printf("%\n", ii)
}
string[length] = 0;
return | ength

}
Call this C function from Lisp:

(fli:define-foreign-function (crlf-string
"crlf_string"
:source)
((length :int)
(return-string (:reference-return
(:ef-nmb-string
climt 256
.external -format :latin-1))))
:lambda-1ist (length &ux return-string)
:cal l'i ng-convention : cdecl
;result-type :int)

(rmul tipl e-value-bind (length string)

5 Advanced Uses of the FLI

(crif-string 99)
(format t "~&C length ~D, Lisp string length ~D~%
length (length string)))
=>
Clength 99, Lisp string length 67

Each two character CR LF sequence in the foreign string has been mapped to asingle LF character in the Lisp string. If you
want to return a Lisp string and not do line terminator conversion, then you must specify the eol-style as in this example:

(fli:define-foreign-function (crlf-string
"crlf_string"
:source)
((length :int)
(return-string (:reference-return
(:ef-nmb-string
climt 256
;external-format (:latin-1 :eol-style :1f)))))
:lambda-1ist (length &ux return-string)
:cal l'i ng-convention : cdecl
;result-type :int)

(rmul tipl e-val ue-bind (length string)
(crif-string 99)
(format t "~&C length ~D, Lisp string length ~D~%
length (length string)))
=>
C length 99, Lisp string |l ength 99

5.2.8 Win32 API functions that handle strings

Functionsin the Win32 API that handle strings come in two flavors, one for ANSI strings and one for Unicode strings.
Supported versions of Microsoft Windows support both flavors. The functions are named with asingle letter suffix, an A for
the ANSI functions and a Wfor the Unicode functions. So for example both Cr eat eFi | eA and Cr eat eFi | eWexist. InC,
thisisfinessed by the use of #define in the header files.

There are three ways to handle this:

» Usethe A function explicitly, for example:

(define-foreign-function (create-file "CreateFileA")
((I pFi |l eNane wi n32: 1 pcstr) ...))

Thiswill prevent the use of Unicode strings but thisis typically only aproblem if you are handling mixed language data.
Be sure to use the correct FLI typeswi n32: st r, wi n32: | pcst r and so on when explicitly interfacing to an ANSI
Win32 function.

» Use the Wfunction explicitly, for example:

(define-foreign-function (create-file "CreateFil eW)
((lI pFi |l eNane wi n32: | pcwstr) ...))

Thiswill alow use of Unicode strings. Be sureto use the correct FLI typeswi n32: wst r, wi n32: | pcwst r and soon
when explicitly interfacing to a Unicode Win32 function.

» Useencoding : dbcs indefi ne-forei gn-functi on and omit the single letter suffix, for example:

(fli:define-foreign-function (create-file "CreateFile" :dbcs)
((lI pFi |l eNane wi n32: | pctstr) ...))

5 Advanced Uses of the FLI

Thiswill causeit to use the Unicode Wfunction implicitly in supported versions of Windows. (In some older operating
systems such as Windows ME, this mechanism would implicitly use the ANSI A function.)

In all cases, aswell as calling the correct function, you must encode/decode any string arguments and results correctly, to
match the A or Win the function name. The foreign typeswi n32: t str, wi n32: | pct str andwi n32: | pt st r automatically
switch between ANSI and Unicode strings and correspond to the typical ones found in the Win32 API. For more information
about these foreign types, see their manual pages in the LispWorks® User Guide and Reference Manual.

5.2.9 Mapping ni | to a Null Pointer

If you wish astring argument to accept ni | and passit as anull pointer, or to return anull pointer as Lisp value ni | , use the
:al l ow nul | argument tothe: r ef er ence types.

The C function st r cap in the following example modifies a string, but also accepts and returns a null pointer if passed.

Windows version:

#incl ude <string. h>
#i ncl ude <ctype. h>

__decl spec(dll export) void __cdecl strcap(char *string)

{
int |en;
int ii;
if (string) {
len = strlen(string);
if (len > 0) {
for (ii =len - 1; ii >0; ii--)
if (isupper(string[ii]))
string[ii] = tolower(string[ii]);
if (islower(string[0]))
string[0] = toupper(string[O0]);
}
}
}

Non-Windows version:

#incl ude <string. h>
#i ncl ude <ctype. h>

voi d strcap(char *string)

{
int |en;
int ii;
if (string) {
len = strlen(string);
if (len > 0) {
for (ii =len - 1; ii >0; ii--)
if (isupper(string[ii]))
string[ii] = tolower(string[ii]);
if (islower(string[0]))
string[0] = toupper(string[O0]);
}
}
}

With this following foreign function definition:

(fli:define-foreign-function (strcap "strcap" :source)
((string (:reference :ef-nb-string)))

46

5 Advanced Uses of the FLI

: 1 anguage

:C

:cal ling-convention
:cdecl)

(strcap "abC")

=>

n AbCu

However (strcap nil) signalserror becausethe: ef - nb- st ri ng type expects a string.

Using: al | ow nul | alowsni | to be passed:

(fli:define-foreign-function (strcap "strcap" :source)
((string (:reference :ef-nmb-string :allownull t)))
;1 anguage
:C
:cal l'i ng-convention
:cdecl)

(strcap nil)
=
ni

Notethat wi t h-f or ei gn-string, convert-to-foreign-stringandconvert-fromforeign-string asoaccept
an: al | ow nul | argument. So another way to cal strcap and allow the null pointer is:

(fli:define-foreign-function (strcap "strcap" :source)
((string :pointer))
;1 anguage
:C
:cal l'i ng-convention
:cdecl)

(defun c-string-capitalize (string)
(fli:with-foreign-string (ptr elts bytes :allownull t)
string
(declare (ignore elts bytes))
(strcap ptr)
(fli:convert-fromforeign-string ptr :allownull t)))

(c-string-capitalize "abC")
=
" Abc”

(c-string-capitalize nil)
=
ni

5.3 Lisp integers
Lisp integers cannot be used directly in the FLI unless they are known to be of certain sizes that match foreign types such as
cint.

However, the FLI provides a mechanism to convert any Lisp integer into aforeign array of bytes and to convert that array
back to an equivalent Lisp integer. Thiswould allow the integer to be stored in an database for example and then retrieved
later.

Themacrowi t h-i nt eger - byt es and thefunction convert-i nt eger -t o- dynani c- f or ei gn- obj ect generatesthe
array of bytes and also to determine its length. The function make- i nt eger - f r om byt es converts the foreign array back

47

5 Advanced Uses of the FLI

to an integer. The layout of the bytesis unspecified, so these operations must be used for all such conversions.

5.4 Defining new types

The FLI providesthedef i ne-f or ei gn-t ype macro for defining new FLI types, using the basic FLI types that you have
seenin 2 FLI Types. The next example shows you how to define a new array type that only takes an odd number of
dimensions.

(fli:define-foreign-type odd-array (el ement &rest dinensions)
(unl ess (oddp (length di nensions))
(error "Can't define an odd array with even dimensions - try
addi ng an extra dinmension!"))
“(:c-array ,element , @i nmensions))

The new array typeiscalled odd- ar r ay, and takes a FLI type and a sequence of numbers as its arguments. When trying to
alocate an odd- ar r ay, if there are an even number of itemsin the sequence then an error israised. If there are an odd
number of items then an instance of the array is allocated. The next command raises an error, because a2 by 3 array hasan
even dimension.

(fli:allocate-foreign-object :type '(odd-array :int 2 3))
However, adding an extra dimension and defining a2 by 3 by 4 array works:

(fli:allocate-foreign-object :type '(odd-array :int 2 3 4))

For more information on defining types see def i ne- f or ei gn-t ype.

5.5 Using DLLs within the LispWorks FLI

In order to use functions defined in adynamically linked library (DLL) within the LispWorks FLI, the functions need to be
exported from the DLL.

5.5.1 Using C DLLs
You can export C functions in three ways:

1. Usea__decl spec(dl | export) declarationinthe Cfile.

In this case you should also make the functions use the cdecl| calling convention, which removes another level of name
mangling.

2. Usean/ export directivein the link command.
3. Usea. def file.

An example of method 2 follows. Let us assume you have the following C codein afile caled exanpl e. c.

int multiply (int i1, int i2)
{ int result;
result =i1 * i2 * 500
return result;

}

Then you can create aDLL by, for example, using a 32 bit C compiler such ascl . exe.

5 Advanced Uses of the FLI

cl /LD exanple.c /link /export:multiply

Finally, you should use the LispWorks FL1 to define your C function in your Lisp code. This definition should ook
something like:

(fli:define-foreign-function (multiply "multiply")
((x :int)
(y :int))
cresult-type :int
:nodul e :nmy-dl |
:cal l'ing-convention :cdecl)

Notethat thedef i ne-f or ei gn-functi on asoincludesa: cal | i ng- conventi on keyword to specify that the function
we are interfacing to is defined asusing the __cdecl calling convention (the default for cl . exe).

5.5.1.1 Testing whether a function is defined

Having loaded your DLLs (withr egi st er - nodul e) you may wish to test whether certain functions are now available.

To detect when a C function name is defined, call:
(fli:foreign-synbol -defined-p name)

You can also return alist of unresolved foreign symbol names by calling nodul e- unr esol ved- synbol s.

5.5.2 Using C++ DLLs
You must make the exported names match the FLI definitions. To do this:
* If you can dter the C++ code, wrapextern "C' {} around the C++ function definitions, or:

» Create asecond DLL with C functions that wrap around each C++ function, and make those C functions accessible as
described in 5.5.1 Using C DLLs.

Note: watch out for the calling convention of the exported function, which must match the: cal | i ng- conventi on inthe
FLI definitions.

5.6 Incorporating a foreign module into a LispWorks image

Embedded dynamic modules are dynamically loaded foreign modules which are embedded (that is, the dataiis stored inside
the LispWorks image). They can then be used at run time.

The formats supported include DLL on Windows, dylib on macOS, and shared object or shared library on other platforms.
See 1.1.2 L oading foreign code for details of the types of modules supported.

You use an embedded dynamic module when you want to integrate foreign code, and that foreign code is not expected to be
available on the end-user's computer. In principle this could also be achieved by supplying the foreign module as a separate
file together with the Lisp image, locating it at run time and loading it with r egi st er - nodul e. The embedded dynamic
modules mechanism simplifies this.

Themaininterfaceis get - enbedded- nodul e, which iscalled at load timeto "intern" the module, and

i nstal | - enbedded- nodul e which needs to be called at run time to make the foreign code available. It is possible to
incorporate in afadl file by using get - enbedded- nodul e- dat a and set up- enbedded- nodul e instead of

get - enbedded- nodul e.

Another way to "intern" the moduleisto defineal w: def syst emsystem containing a C source file member with the

49

5 Advanced Uses of the FLI

: enbedded- nodul e keyword. When the system is loaded, the value associated with : enbedded- nodul e is used to create
the embedded module. You would then call i nst al | - enbedded- nodul e at run time to make the foreign code available.

5.7 Block objects in C (foreign blocks)

This section applies to LispWorks for Macintosh, only.

Foreign blocks are objects that correspond to the opaque "Block" object in C and derived languages that are introduced in
CLANG and used by Apple Computer, Inc.

A "Block" in Cissimilar to aclosurein Lisp. It encapsulates a piece of code, and potentially some variables (which may be
local), and alows invocation of this code.

LispWorks foreign blocks allows your Lisp program to call into and get called by code that uses blocks.

A foreign block is represented in LispWorks by aforeign pointer with pointer typef or ei gn- bl ock- poi nt er . Even though
these are foreign pointers, these objects should be regarded as opague, and should not be manipulated or used except as
described below.

You use aforeign block by passing it to aforeign function that is defined to take a block as an argument, or by invoking a
block that is received from aforeign function. The argument type needs to be specified asf or ei gn- bl ock- poi nter.

When aforeign function invokes a block which was created in Lisp (or acopy of it), thisinvocation calls aLisp function
which the programmer supplied to the creating function or macro. When Lisp invokes a block that came from foreign code, it
invokes some (unknown) foreign code.

Blocks can be used to run code via the Grand Central Dispatch mechanism (GCD) in macOS (see Apple documentation).
Thereisasimple examplein:

(exanmple-edit-file "fli/grand-central -dispatch")

5.7.1 Calling foreign code that receives a block as argument
To call foreign code that needs a block as an argument, the Lisp program needs to create the blocks. You do thisin two steps:

1. At load time, define a"type" by using the macro def i ne- f or ei gn- bl ock- cal | abl e-t ype. This"type" corresponds
to the "signature” in C.

2. At run time, generate the block, for example by calling al | ocat e- f or ei gn- bl ock with the "type". Alternatively use
one of the macroswi t h- f or ei gn- bl ock andwi t h-1 ocal - f or ei gn- bl ock. When generating the block, you also
pass an arbitrary Lisp function that gets called when the block (or acopy of it) isinvoked.

Foreign blocks created by al | ocat e- f or ei gn- bl ock are released when appropriate by f r ee- f or ei gn- bl ock.

Foreign block pointers created by al | ocat e- f or ei gn- bl ock are of typef or ei gn- bl ock- poi nt er and print with
"li sp-foreign-bl ock-pointer".

For examples see:
(exanple-edit-file "fli/foreign-blocks")
and:

(example-edit-file "fli/grand-central -dispatch")

50

5 Advanced Uses of the FLI

5.7.2 Operations on foreign blocks

You might obtain aforeign pointer of typef or ei gn- bl ock- poi nt er that was passed as an argument to another foreign
block, to a callable defined by def i ne-f or ei gn- cal | abl e or returned by aforeign function.

The foreign block can be invoked by defining an invoker (at load time) using def i ne-f or ei gn- bl ock-i nvoker , and
calling the invoker. If you need to keep the block after returning to the caller, you normally need to copy it by

f or ei gn- bl ock- copy. If you copy ablock, once you are finished with it, you should release it by

f orei gn- bl ock-rel ease.

For examples of this see:

(example-edit-file "fli/invoke-foreign-block")

5.7.3 Scope of invocation
In principle, in the general case each of these is not defined:

» Thetime at which the code that the block encapsulatesisinvoked. In particular, even after ablock isreleased (freed), the
same code may be invoked by a copy of the block.

* Inwhich thread the code is invoked.
» How many invocations can occur in parallel. In other words, whether it isinvoked serially or concurrently.

The implementation of foreign blocks copes with all of these, that isit can work concurrently on any thread and after the
block was released/freed, as long as there are live copies of it (except with blocks created by

wi t h-1 ocal - f or ei gn- bl ock). However, whether the code inside the block can cope with it is dependent on the code.
This needs to be considered when creating blocks.

Specific foreign functions that take blocks as argument should be documented to state the scope of invocation. Apple's
documentation commonly states whether the code isinvoked concurrently or serialy. 1n some functions the caller can decide
when it calls the function whether the code can be executed concurrently or not. If you pass the block to afunction that is
documented to execute it serialy, or you cantell it to do it, then you can assume that function that you made the block with is
not going to be called concurrently from the block. Otherwise it must be able to cope with concurrent calls from the blocks.

Whether the code may be invoked on another thread or after the function that took the block returned is not normally
documented. In many cases it can be deduced with confidence: when you dispatch a block to a queue (for example

di spat ch_aft er and similar functions, see the Apple documentation) it clearly can be invoked from ancther threads after
the function returns. Inthe case of gsort _b (see Apple documentation and the examplein

(exanpl e-edit-file "fli/foreign-bl ocks"))wecan be surethat the code will not be invoked after gsort _b
returned, because the arguments to the block are based on the data (first argument to gsort _b), and gsort _b and its callees
cannot be guaranteed that the datais still valid once gsort _b returned. On the other hand, we cannot be sure that the block
is not invoked on another thread(s) beforegsor t _b returns. Currently it is probably always called in the same thread where
gsort _b was called, but the interface does not guaranteeit.

Thus when you create aforeign block in Lisp, the following considerations apply to the Lisp function function that you
supply:

* In most cases, function needs to cope with being called in any thread, and hence cannot rely on the dynamic
environment. Normally it isimpossible to deduce that function will not be called on another thread, so it can be
guaranteed only when the function to which the block is passed is documented to guarantee it.

Note: that isthe only situation in whichitisreally validto usewi t h-1 ocal - f or ei gn- bl ock.

51

5 Advanced Uses of the FLI

« function may need to be able to cope with being called at any time, unlessit is documented or deducible from the
interface that it can be called only within the scope of the caller. It may be possible to deduce the time limit on a call
from the way the block is used.

» The function needs to be able to cope with being called concurrently, unless the documentation of the user of the blocks
saysthat it does not, or you can tell that it is going to be called only on one thread.

5.8 Interfacing to graphics functions

This section applies to LispWorks for Windows, only.

If you use graphics functionality viathe FLI on Microsoft Windows be aware that you may need to call the function
gp: ensur e- gdi pl us. Seethe CAPI User Guide and Reference Manual for a detailed explanation.

This condition does not apply on non-Windows platforms.

5.9 Summary

In this chapter a number of more advanced examples have been presented to illustrate various features of the FLI. The use of
the FL1 to pass strings dynamically to Win32 API functions was examined, as was the definition of new FLI types and the use
of callable functions and foreign functions, including code using blocks.

The next two chapters form the reference section of this manual. They provide reference entries for the functions, macros,
and types which make up the FLI.

52

6 Self-contained examples

This chapter enumerates the set of examplesin the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open thefilein the Editor tool in the LispWorks IDE. Evaluating the call to exanpl e-edi t-fi | e shown below will
achieve this.

2. Compile the example code, by Ct r | +Shi f t +B.
3. Place the cursor at the end of the entry point formand pressCtr | +X Ctrl +Etorunit.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

6.1 Foreign block examples

This section lists the examplesillustrating the use of foreign blocks, which is described in 5.7 Block objectsin C (foreign
blocks).

These examples apply to LispWorks for Macintosh only:

(example-edit-file "fli/foreign-blocks")
(example-edit-file "fli/grand-central -dispatch")

(example-edit-file "fli/invoke-foreign-block")

6.2 Miscellaneous examples

(exanple-edit-file "fli/foreign-call abl e-exanpl e")

53

7 Function, Macro and Variable Reference

align-of

Summary

Returns the alignment in bytes of aforeign type.

Package

fli

Signature

al i gn- of type-name => alignment

Arguments

type-namel] A foreign type whose alignment is to be determined.
Values

alignment The alignment of the foreign type type-name in bytes.
Description

The function al i gn- of returnsthe alignment in bytes of the foreign language type named by type-name.

Examples

The following example shows types with various alignments.

(fli:align-of :char)
=>
1

(fli:zalign-of :int)
=>
4

(fli:align-of :double)
=>

8

(fli:align-of :pointer)
=>
4

Function

7 Function, Macro and Variable Reference

See also

al | ocat e-f orei gn-obj ect
free-foreign-object

allocate-dynamic-foreign-object
alloca Functions

Summary

Allocates memory for an instance of aforeign object within the scope of awi t h- dynani c-f or ei gn- obj ect s macro.

Package

fli

Signatures

al | ocat e- dynani c-f or ei gn- obj ect &key type pointer-type initial-element initial-contents fill nelems size-slot =>
pointer

al | oca &key type pointer-type initial-element initial-contents fill nelems size-slot => pointer

Arguments

typel] A FLI type specifying the type of the object to be allocated. If typeis supplied, pointer-
type must not be supplied.

pointer-typel] A FLI pointer type specifying the type of the pointer object to be allocated. If pointer-type
is supplied, type must not be supplied.

initial-element] The initia value of the newly allocated objects.

initial-contents] A list of valuesto initialize the contents of the newly allocated objects.

fillo An integer between 0 to 255.

nelems] An integer specifying how many copies of the object should be allocated. The default
vaueis 1.

size-dot[] A symbol naming aslot in the object.

Values

pointer A pointer to the specified type or pointer-type.

Description

Thefunction al | ocat e- dynami c- f or ei gn- obj ect allocates memory for a new instance of an object of type type or an
instance of a pointer object of type pointer-type within the scope of the body of the macro
wi t h-dynani c-f or ei gn- obj ect s.

initial-element, initial-contents, fill, nelems and size-dlot initialize the allocated instance as if by
al l ocate-foreign-object.

Once this macro has executed, the memory allocated using al | ocat e- dynani c- f or ei gn- obj ect istherefore
automatically freed for other uses.

55

7 Function, Macro and Variable Reference

Thefunction al | oca isasynonym for al | ocat e- dynami c- f or ei gn- obj ect.

Examples

A full exampleusingwi t h- dynami c- f or ei gn- obj ect s and al | ocat e- dynani c- f or ei gn- obj ect isgivenin 1.4 An
example of dynamic memory allocation.

See also

al | ocat e-f orei gn- obj ect

wi t h- dynami c-forei gn-obj ects

1.4 An example of dynamic memory allocation

3.5 More examples of allocation and pointer allocation
5.2.4 Modifyingastringin a C function

allocate-foreign-block Function

Summary

Allocates aforeign block, in LispWorks for Macintosh.

Package

fli

Signature

al | ocat e-forei gn- bl ock type function & est extra-arguments => foreign-block

Arguments

typel A symbol.

functiond A Lisp function.

extra-argumentsC] Arguments.

Values

foreign-block A Lisp-allocated f or ei gn- bl ock- poi nter.
Description

Thefunction al | ocat e- f or ei gn- bl ock alocates aforeign black of type type such that when the foreign block isis
invoked it calls the function function with the arguments given to the block followed by extra-arguments (if any).

typeis a symbol which must have been defined as atype using def i ne-f or ei gn- bl ock-cal | abl e-t ype.

function is any Lisp function, but see the 5.7.3 Scope of invocation for potential limitations.

Theresulting foreign block lives indefinitely, until it isfreed by f r ee- f or ei gn- bl ock, and can be used repeatedly and
concurrently. It cannot be garbage collected, so if your program repeatedly allocates foreign blocks, you need to free them by
callstofree-foreign-bl ock. Themacrowi t h-f or ei gn- bl ock doesthisfor you.

extra-arguments allows you to (roughly speaking) "close over" some values to the function, but they are read-only. If the

56

7 Function, Macro and Variable Reference

function needs to set values, you can either pass some objects and set slots inside them, or make the function areal Lisp
closure.

Notes
Theresult of al | ocat e- f or ei gn- bl ock printswith" 1 i sp-f or ei gn- bl ock- poi nter".

al | ocat e- f or ei gn- bl ock isimplemented in LispWorks for Macintosh only.

See also

define-foreign-block-call abl e-type
free-foreign-bl ock

wi t h-forei gn-bl ock

5.7 Block objectsin C (foreign blocks)

allocate-foreign-object
malloc Functions

Summary

Allocates memory for an instance of aforeign object.

Package

fli

Signatures

al | ocat e-f orei gn-obj ect &key type pointer-type initial-element initial-contents fill nelems size-slot allocation =>
pointer

mal | oc &key type pointer-type initial-element initial-contents fill nelems size-dot allocation => pointer

Arguments

typel] A FLI type specifying the type of the object to be allocated. If typeis supplied, pointer-
type must not be supplied.

pointer -typel] A FLI pointer type specifying the type of the pointer object to be allocated. If pointer-type
is supplied, type must not be supplied.

initial-element] Theinitial value of the newly allocated objects.

initial-contents] A list of valuesto initialize the contents of the newly allocated objects.

fillo An integer between 0 to 255.

nelems] Aninteger specifying how many copies of the object should be alocated. The default
valueis1.

size-dot[] A symbol naming aslot in the object.

allocation A keyword, either : dynami c or: stati c.

57

7 Function, Macro and Variable Reference

Values

pointer] A pointer to the specified type or pointer-type.

Description

Thefunction al | ocat e- f or ei gn- obj ect allocates memory for a new instance of an object of type type or an instance of a
pointer object of type pointer-type.

If allocationis: st at i ¢ then memory is allocated in the C heap and must be explicitly freed using f r ee- f or ei gn- obj ect
once the object is no longer needed.

If allocationis: dynami c, thenal | ocat e-f or ei gn- obj ect allocates memory for the object and pointer within the scope
of the body of wi t h- dynani c- f or ei gn- obj ects. Thisisequivalenttousing al | ocat e- dynani c- f or ei gn- obj ect.

The default value of allocationis: st ati c.

An integer value of fill initializes all the bytes of the object. If fill is not supplied, the abject is not initialized unlessinitial-
element or initial-contents is passed.

If initial-contents is supplied and its length is less than nelems, then the remaining elements are not initialized.

If initial-contents is supplied and its length is greater than nelems, then the length of initial-contents overrides nelems. Thisis
acommon case where initial-contents is supplied and nelems is omitted (and hence defaultsto 1).

size-slot can be used to initialize aglot in astruct or union type to the size of the object in bytes. If size-dot is supplied then it
must be the name of adlot in that type. The slot named by size-dlot is set to the size of the object in bytes. This occurs after
fill, initial-element and initial-contents are processed. If nelemsis greater than 1, then the slot named by size-dot isinitialized
in each element. If size-dlot is not supplied, then no such setting occurs.

The function mal | oc isasynonym for al | ocat e- f or ei gn- obj ect .

Notes

When allocation is: st ati ¢, memory allocated by al | ocat e- f or ei gn- obj ect isinthe C heap. Therefore pointer (and
any copy) cannot be used after save- i mage or del i ver.

Examples

In the following example a structure is defined and an instance with a specified initial value of 10 is created with memory
alocated using al | ocat e- f or ei gn- obj ect. Theder ef er ence function is then used to get the value that poi nt points
to, and finaly it isfreed.

(fli:define-c-typedef LONG :Iong)

(setq point (fli:allocate-foreign-object
:type ' LONG
cinitial-elenment 10))

(fli:dereference point)

(fli:free-foreign-object point)

See also

al | ocat e- dynani c- f or ei gn- obj ect
free-foreign-object
3FLI Pointers

58

7 Function, Macro and Variable Reference

cast-integer

Summary

Casts an integer to agiven type.

Package

fli

Signature

cast-i nteger integer type => result

Arguments

integer] A Lisp integer.
typel] A foreign type.
Values

result A Lisp integer.
Description

Thefunction cast - i nt eger caststheinteger integer to the foreign type type.

type must be a FLI integer type, either primitive or derived.

Examples

(format nil "~B"
(fli:cast-integer -1 '(:unsigned :int)))
=
"11111111111111111111111111111111"
See also

. si gned
: unsi gned

connected-module-pathname

Summary

Returns the real pathname of a connected module.

Package

fli

59

Function

Function

7 Function, Macro and Variable Reference

Signature

connect ed- nodul e- pat hnane name => pathname

Arguments

namel] A string or symbol.
Values

pathname A pathname or ni | .
Description

The function connect ed- nodul e- pat hnane returns the real pathname of the connected module registered with name
name.

If no module nameisregistered, or if the module name is not connected, then connect ed- nodul e- pat hnane returnsni | .

Examples

(fli:connected- nodul e- pat hnane "gdi 32")
=>
#P" C. / W NNT/ syst en82/ GDI 32. dl | "

(fli:register-nodule :user-dll
:file-nane "user32"
:connection-style :inmediate)
=>
suser-dl |

(fli:connected-nodul e-pat hnane :user-dll)
=>
#P" C. / W NNT/ syst en82/ USER32. dI | "

(fli:disconnect-nmodul e :user-dll)
=>
t

(fli:connected-nodul e-pat hnane :user-dll)
=>
nil

See also

di sconnect - nodul e
regi ster-nodul e

convert-from-foreign-string Function

Summary

Converts aforeign string to a Lisp string.

60

7 Function, Macro and Variable Reference

Package

fli

Signature

convert-fromforeign-string pointer &ey external-format length null-terminated-p allow-null => string

Arguments

pointer] A pointer to aforeign string.

external-format] An external format specification.

lengthC) The length of the string to convert.

null-ter minated-pC] If t, it isassumed the string terminates with anull character. The default value for null-
terminated-p ist .

allow-nullJ A boolean. The default isfalse.

Values

string A Lispstring, orni | .

Description

Thefunction convert - from forei gn-string, given apointer to aforeign string, converts the foreign string to aLisp
string. The pointer does not need to be of the correct type, asit will automatically be coerced to the correct type as specified
by external-format.

external-format isinterpreted as by wi t h-f or ei gn- st ri ng. The names of available external formats are listed in section
26.7 External Formats to trandate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual.

Either length or null-terminated-p must be non-nil. If null-terminated-p is true and length is not specified, it is assumed that
the foreign string to be converted is terminated with a null character.

If allow-null istrue and pointer isanull pointer then ni | isreturned. Otherwise, an error issignalled if pointer isanull
pointer.

See also

convert-to-foreign-string

set-locale

set -1 ocal e- encodi ngs

with-foreign-string

26.7 External Formatsto trandate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual

5.24 Modifying a string in a C function

5.2.9 Mapping ni | to a Null Pointer

61

7 Function, Macro and Variable Reference

convert-integer-to-dynamic-foreign-object Function

Summary

ConvertsaLisp integer to foreign bytes.

Package

fli

Signature

convert-integer-to-dynam c-forei gn-object integer => pointer, length

Arguments

integer O An integer.
Values

pointer [A foreign pointer.
lengthOd An integer.
Description

Thefunction convert -i nt eger -t o- dynani c- f or ei gn- obj ect makes adynamic foreign object containing the bytes of
integer and returns pointer pointing to the first byte of that object and length which is the number of bytesin that object. The
layout of the bytesis unspecified, but the bytes and the length are sufficient to reconstruct integer by calling

nmake- i nt eger-from bytes.

See also

5.3Lispintegers
wi t h-i nt eger-bytes
nmake-i nteger-frombytes

convert-to-dynamic-foreign-string Function

Summary

Converts a Lisp string to aforeign string within the scope of the body of awi t h- dynani c- f or ei gn- obj ect s macro.

Package

fli

Signature

convert-to-dynam c-foreign-string string &ey external-format null-terminated-p allow-null => pointer, length,
byte-count

62

7 Function, Macro and Variable Reference

Arguments

stringC] A Lisp string.

external-format] An external format specification.

null-ter minated-pC] If t, the foreign string terminates with anull character. The default valueist .
allow-null] A boolean. The defaultisni | .

Values

pointer] A FLI pointer to the foreign string.

length The length of the string (including the terminating null character if thereis one).
byte-count The number of bytesin the converted string.

Description

Thefunction convert -t o- dynami c- f or ei gn- stri ng convertsaLisp string to aforeign string, and returns a pointer to
the string and the length of the string. The memory allocation for the string and pointer is within the scope of the body of a
wi t h- dynani c- f or ei gn- obj ect s command.

external-format isinterpreted as by wi t h- f or ei gn- st ri ng. The names of available externa formats are listed in section
26.7 External Formats to trandate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual.

null-terminated-p specifies whether the foreign string is terminated with anull character. It defaultstot .

If allow-null isnon-nil and string isni | then anull pointer pointer isreturned. Otherwise, an error issignalled if string is
nil.

See also

al | ocat e-dynani c-f or ei gn- obj ect

convert-fromforeign-string

convert-to-foreign-string

set-local e

set -l ocal e- encodi ngs

wi t h-dynani c-forei gn-obj ects

with-foreign-string

26.7 External Formats to trandate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual

5.2.5 Calling a C function that takes an array of strings

convert-to-foreign-string Function

Summary

ConvertsaLisp string to aforeign string.

Package

fli

63

7 Function, Macro and Variable Reference

Signature

convert-to-foreign-string string &ey external-format null-terminated-p allow-null into limit allocation => pointer,
length, byte-count

Arguments

string A Lisp string.

external -format An external format specification.

null-ter minated-p0] If t, the foreign string terminates with anull character. The default valueist .
allow-nullO A boolean. Thedefaultisni | .

intod A foreign array, aforeign pointer or ni | . The defaultisnil .

limitQ A non-negative fixnum, or ni | . Thedefaultisni | .

allocation] A keyword, either : dynami c or : stati c. Thedefaultis: static.

Values

pointer] A FLI pointer to the foreign string.

length[] The length of the foreign string (including the terminating null character if thereis one).
byte-count(] The number of bytesin the foreign string.

Description

Thefunction convert -t o-f or ei gn- stri ng convertsaLisp string to aforeign string, and returns a pointer to the string.

external-format isinterpreted asby wi t h- f or ei gn- st ri ng. The names of available external formats are listed in section
26.7 External Formats to trandate Lisp characters from/to external encodingsin the LispWorks® User Guide and Reference
Manual.

null-terminated-p specifies whether the foreign string is terminated with a null character. It defaultstot .

If allow-null isnon-nil and string isni | then anull pointer pointer isreturned. Otherwise, an error issignalled if string is
nil.

If intoisni |, then anew foreign string is allocated according to allocation, and limit isignored.

If into isaFLI pointer to ainteger type, then limit must be afixnum and up to limit elements are filled with elements
converted from the characters of string. The size of the integer type must equal the foreign size of external-format.

If intoisaFLI array of integers or a pointer to aFLI array of integers, up to limit elements are filled with elements converted
from the characters of string. If limitisni | , then the dimensions of the array are used. The size of the array element type
must equal the foreign size of external-format.

If allocationis: dynani c, thenconvert -t o- f or ei gn- st ri ng alocates memory for the string and pointer within the
scope of the body of wi t h- dynani c- f or ei gn- obj ect s and additional values, length and byte-count are returned. Thisis
equivalent to using convert -t o- dynami c- f or ei gn- st ri ng. Otherwise, the allocation is static and length and byte-count
are not returned.

See also

convert-fromforeign-string
set-local e
set -l ocal e- encodi ngs

7 Function, Macro and Variable Reference

with-foreign-string

26.7 External Formats to tranglate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference

Manual
5.2.5 Calling a C function that takes an array of strings

copy-pointer

Summary

Returns a copy of a pointer object.

Package

fli

Signature

copy- poi nter pointer &ey type pointer-type => copy

Arguments

pointer(J A pointer to copy.

typel] A FLI type descriptor.
pointer -typel] A FLI pointer type descriptor.
Values

copyld A copy of pointer.
Description

The function copy- poi nt er returnsacopy of pointer.

Function

If typeissupplied, thenit is used asthe FLI type that copy pointsto. Alternatively, if pointer-typeis supplied, then it must be
aFLI pointer type and it is used as the pointer type of copy. If neither type nor pointer-type are supplied then the type of

copy isthe same as pointer. An error issignalled if both type and pointer-type are supplied.

Examples

In the following example a pointer poi nt 1 is created, pointing to a: char type. The variable poi nt 2 is set equal to poi nt 1
using set q, whereas poi nt 3 is set using copy- poi nt er . When poi nt 1 ischanged using i ncf - poi nt er, poi nt 2

changes aswell, but poi nt 3 remains the same.

(setqg pointl (fli:allocate-foreign-object
:type :char))

(setqg point2 pointl)
(setq point3 (fli:copy-pointer pointl))

(fli:incf-pointer pointl)

The results of this can be seen by evaluating poi nt 1, poi nt 2, and poi nt 3.

65

http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

7 Function, Macro and Variable Reference

The reason for this behavior isthat poi nt 1 and poi nt 2 are Lisp variables containing the same foreign pointer object, a

pointer to achar , whereas poi nt 3 contains a copy of the foreign pointer object.

See also

nmake- poi nt er
Wi t h- coer ced- poi nter
3.1.2 Copying pointers

decf-pointer

Summary

Decreases the address held by a pointer.

Package

fli

Signature

decf - poi nter pointer &ptional delta => pointer

Arguments

pointer] A FLI pointer.

deltal Aninteger. The default is 1.
Values

pointer The pointer passed.
Description

Function

The function decf - poi nt er decreases the address held by pointer. If deltais not given the address is decreased by the size
of the type pointed to by pointer. The address can be decreased by a multiple of the size of the type by specifying a value for

delta. If the size of the typeis 0 then an error is signalled.

The function decf - poi nt er isoften used to move a pointer through an array of values.

Examples

In the following example an array with 10 entriesis defined. A copy of the pointer to the array is made, and is incremented

and decremented.

(setqg array-obj

(fli:allocate-foreign-object :type :int

:nelens 10

cinitial-contents '(0 1234567 829)))

(setqg pointl (fli:copy-pointer array-obj))

(dotimes (x 9)
(print (fli:dereference pointl))

66

7 Function, Macro and Variable Reference

(fli:incf-pointer pointl))
(dotinmes (x 9)

(fli:decf-pointer pointl)
(print (fli:dereference pointl)))

See also

i ncf-pointer
3.4 An example of dynamic pointer allocation

define-c-enum Macro

Summary

DefinesaFLI enumerator type specifier corresponding to the C enumtype.

Package

fli

Signature

defi ne- c- enum name-and-options &r est enumerator-list => list

name-and-options : : = name | (name option*)

option :: = (:foreign-name foreign-name) | (:forward-reference-p forward-reference-p)
enumerator-list : : = {entry-name | (entry-name entry-value) } *

Arguments

enumerator-listC] Symbols, possibly with integer values, constituting the enumerator type.
namel] A symbol naming the new enumeration type specifier.

foreign-namer] A string specifying the foreign name of the type.

forward-reference-p] A boolean.

entry-namel] A symbol.

entry-valuel] An integer value for an entry-name.
Values

list Thelist (: enum name) .
Description

The macro def i ne- c- enumis used to define a FLI enumerator type specifier, which corresponds to the C enumtype. Itisa
convenience function, as an enumerator type could also be defined using def i ne- f or ei gn- t ype.

The FLI type specifier is named by name, with optional foreign name foreign-name.

Each entry in enumerator-list can either consist of a symbol entry-name, in which case the first entry has an integer value of

67

7 Function, Macro and Variable Reference

0, or of alist of asymbol entry-name and its corresponding integer value entry-value.

When forward-reference-p is true, the new type specifier is defined as a forward reference type and descriptions can be
empty. Seedefi ne-forei gn-forward-reference-type.

Examples

In the following example a FLI enumerator type specifier is defined, and the corresponding definition for a C enumerator type
follows.

(define-c-enumcolors red green bl ue)

enum col ors { red, green, blue};

The next example illustrates how to start the enumerator value list counting from 1, instead of from the default start value of
0.

(define-c-enum hal f_year (jan 1) feb mar apr nmay jun)

enum hal f _year { jan = 1, feb, mar, apr, nay, jun }

See also

define-c-struct

defi ne-c-typedef
defi ne-c-union
define-foreign-type
enum synbol - val ue
2FLI Types

define-c-struct Macro

Summary

DefinesaFLI structure type specifier corresponding to the C st r uct type.

Package

fli

Signature

define-c-struct name-and-options & est descriptions => list

name-and-options : : = name | (name option*)

option :: = (:foreign-nanme foreign-name) | (:forward-reference-p forward-reference-p)
descriptions : : = {dot-description | byte-packing | aligned} *

slot-description : : = (dot-name dot-type)

byte-packing :: = (: byt e- packi ng nbytes)

aligned :: = (:aligned nbytes)

68

7 Function, Macro and Variable Reference

Arguments
namel] A symbol naming the new structure type specifier.
foreign-namel] A string specifying the foreign name of the structure.

forward-reference-pl] A boolean.

byte-packing(] A list specifying byte packing for the subsequent slots.
dot-named A symbol naming the dot.

slot-typel] The foreign type of the slot.

nbytes[] The number of 8-bit bytes to pack.

Values

list Thelist (: struct name).

Description

Themacro def i ne- c- st ruct isused to define aFLI structure type specifier, which correspondsto the C st r uct type. Itis
a convenience function, as a structure type could also be defined using def i ne- f or ei gn- t ype.

A structure is an aggregate type, or collection, of other FLI types. The types contained in a structure are referred to as dots,
and can be accessed using the f or ei gn- sl ot -t ype andf or ei gn- sl ot - val ue functions.

The FLI type specifier is named by name, with optional foreign name foreign-name.

Each dlot-description isalist of a symbol slot-name and a corresponding FL I type descriptor slot-type which is the type of the
slot named by slot-name.

Some C compilers support pragmas such as:
#pragma pack(1)

which causesfieldsin a structure to be aligned on a byte boundary even if their natural alignment islarger. This can be
achieved from Lisp by specifying suitable byte-packing forms in the structure definition, asin the example below. Each byte-
packing form specifies the packing for each slot-description that followsit in the def i ne- c- st ruct form. It isimportant to
use the same packing as the C header file containing the foreign type.

An aligned form specifies that the next slot must be aligned on nbytes bytes. Note that this affects only the alignment of the
next slot. It does not affect the length of the slat, or the alignment of other slots. You will need this when the slot is made to
be aligned, for examplein gcc asot defined like this:

int slot_name __attribute__ ((aligned (16))) ;

needs to be aligned on 16 bytes, even though the native alignment of the typei nt is4.

When forward-reference-p istrue, the new type specifier is defined as aforward reference type and descriptions can be
empty. Seedefi ne-forei gn-forward-reference-type.

Notes

foreign-name, specifying the foreign name, is supported only for documentation purposes.

69

7 Function, Macro and Variable Reference

Examples

The first example shows a C structure definition and the corresponding FLI definition:

struct a-point {
int x;
int vy;
byte col or;
char ident;

I

(fli:define-c-struct a-point (x :int)
(y :int)
(color :byte)
(ident :char))

The second example shows how you might retrieve datain Lisp from a C function that returns a structure:

struct 3dvector

{

float x;
float y;
float z;

}

static 3dvector* vector

3dvector* fn ()
{

return vector;

}

(fli:define-c-struct 3dvector
(x :float)
(y :float)
(z :float))

(fli:define-foreign-function fn ()
:result-type (:pointer (:struct 3dvector)))

(let ((vector (fn)))
(fli:with-foreign-slots (x y z) vector
(values x vy 2)))

Finally an example to illustrate byte packing. This structure will require 4 bytes of memory because the field named a-short
will be aligned on a 2 byte boundary and hence a byte will be wasted after the a-byte field:

(fli:define-c-struct foo ()
(a-byte (:unsigned :byte))
(a-short (:unsigned :short)))

After adding byte-packing, the structure will require only 3 bytes:

(fli:define-c-struct foo
(: byte-packing 1)
(a-byte (:unsigned :byte))
(a-short (:unsigned :short)))

See also

def i ne-c- enum

70

7 Function, Macro and Variable Reference

defi ne-c-typedef
defi ne-c-union
define-foreign-type
f orei gn-sl ot - nanes
forei gn-slot-type
forei gn-sl ot -val ue
2FLI Types

define-c-typedef Macro

Summary

Defines FLI type specifiers corresponding to type specifiers defined using the C t ypedef command.

Package

fli

Signature

defi ne-c-typedef name-and-options type-description => name

name-and-options : : = name | (name option*)

option :: = (:foreign-name foreign-name)

Arguments

type.deg:np“onm An FLI type descri ptor

name’] A symbol naming the new FLI type.
foreign-namer] A string specifying the foreign name of the type.
Values

name The name of the new FLI type.

Description

The macro def i ne- c-t ypedef isused to define FLI type specifiers, which corresponds to those defined using the C
functiont ypedef . It isaconvenience function, as types can also be defined using def i ne- f or ei gn-t ype.

The defined FLI type specifier is named by name, with optional foreign name foreign-name. name has no parametersand is
defined as being equivalent to type-description. type-description is not eval uated.

Notes

foreign-name, specifying the foreign name, is supported only for documentation purposes.

Examples

In the following example three types are defined using the FLI function def i ne- c-t ypedef , and the corresponding C
definitions are then given.

71

7 Function, Macro and Variable Reference

(fli:define-c-typedef intptr (:pointer

(fli:define-c-typedef bar (:struct (one :int)))

These are the corresponding Ct ypedef definitions:

typedef int *intptr;
typedef struct (int one;) bar;

See also

defi ne-c-enum
define-c-struct

defi ne-c-union

defi ne-forei gn-type
2FLI Types

define-c-union

Summary

DefinesaFLI union type corresponding to the C uni on type.

Package

fli

Signature

def i ne- c- uni on name-and-options & est dlot-descriptions => list

name-and-options : : = name | (name option*)

option :: = (:foreign-name foreign-name) | (:forward-reference-p forward-reference-p)
slot-descriptions : : = { slot-description} *

slot-description : : = (dot-name dot-type)

Arguments

namel] A symbol naming the new union type descriptor.

foreign-namel] A string specifying the foreign name of the type.

forward-reference-pl] A boolean.

dot-namel] A symbol naming the dot.
slot-typel] The FLI type of the ot.
Values

list Thelist (: uni on name) .

72

Macro

7 Function, Macro and Variable Reference

Description

Themacro def i ne- c- uni on isused to define a FLI union type specifier, which corresponds to the C uni on type. Itisa
convenience function, as a union type could also be defined using def i ne- f or ei gn- t ype.

A union is an aggregate type, or collection, of other FLI types. The types contained in a union are referred to as dots, and
can be accessed using thef or ei gn- sl ot -t ype and f or ei gn- sl ot - val ue functions.

The FLI type specifier is named by name, with optional foreign name foreign-name.

Each dot-description isalist of a symbol slot-name and a corresponding FL I type descriptor slot-type which is the type of the
dlot named by dlot-name.

When forward-reference-p is true, the new type specifier is defined as a forward reference type and descriptions can be
empty. Seedefi ne-forei gn-forward-reference-type.

Notes

foreign-name, specifying the foreign name, is supported only for documentation purposes.

Examples

In the following example aunion is defined using def i ne- c- uni on, and the corresponding C code s given.

(fli:define-c-union a-point (x :int)
(color :hyte)
(ident :char))

uni on a-point {

int x;
byte col or;
char ident;
I
See also

define-c-enum
define-c-struct
define-c-typedef
define-foreign-type
2FLI Types

define-foreign-block-callable-type Macro

Summary

Defines atype for foreign blocks, in LispWorks for Macintosh.

Package

fli

Signature

def i ne-f orei gn- bl ock-cal | abl e-type name result-type arg-types => name

73

7 Function, Macro and Variable Reference

Arguments

name[] A symbol.

result-typel] A foreign type specifier.
arg-typesl] A list of foreign type specifiers.
Values

name Symboal.

Description

The macro def i ne-f or ei gn- bl ock-cal | abl e-t ype definesatype for foreign blocks.

name specifies the name of the type. It must not be the same as the name of adef i ne- f or ei gn-cal | abl e.

result-type specifies the type of the result of the foreign block.

arg-types specifies the types of the arguments that a block of type name takes. These must correspond to the arguments types
with which the block is called from the foreign call.

Note that arg-types specifies the types for a call from foreign code into Lisp, which affectstheway : r ef er ence-return
and : r ef er ence- pass are used. If the block is called from the foreign code with a pointer and you want to treat it as pass-
by-reference, you needto use: r ef er ence-r et ur n (likedef i ne-f or ei gn- cal | abl e does). Seethe gsort_b examplein:

(example-edit-file "fli/foreign-blocks")
define-foreign-bl ock-call abl e-t ype returns name.

Notes

defi ne-f orei gn- bl ock-cal | abl e-t ype isimplemented in LispWorks for Macintosh only.

See also

al | ocat e-forei gn- bl ock

wi t h-f orei gn-bl ock

wi t h-1 ocal - f orei gn-bl ock

5.7 Block objectsin C (foreign blocks)

define-foreign-block-invoker Macro

Summary

Defines an invoker of aforeign block, in LispWorks for Macintosh.

Package

fli

Signature

def i ne-forei gn- bl ock-i nvoker the-name args &ey lambda-list documentation result-type language no-check calling-

74

7 Function, Macro and Variable Reference

convention

Arguments

the-nameld A symbol.

argsl] A lambdallist.

lambda-list[] The lambdal list to be used for the defined Lisp function.

documentation(] A string.

result-typel] A foreign type.

languagel] The language in which the foreign source code is written. The default is: ansi - c.
no-checkl] A boolean.

calling-convention[Specifies the calling convention used.

Description
The macro def i ne-f or ei gn- bl ock-i nvoker defines an invoker of aforeign block.

It defines the-name to be a function that can be used to invoke foreign blocks which takes arguments that match args. The
block isthen invoked by simply calling the function the-name with the block and arguments:

(the-name block argl arg2 ...)

The block argument is of typef or ei gn- bl ock- poi nt er.

defi ne-f or ei gn- bl ock-i nvoker isvery similar todefi ne-f orei gn-funcal | abl e and
defi ne-f orei gn- f unct i on, which specify how documentation, result-type, language, no-check and calling-convention
are used.

Notes

Thelambdallist of the invoker is (block . args) . When lambda-list is supplied, def i ne- f or ei gn- bl ock-i nvoker
insertsin front of the supplied lambda-list an additional argument for the block. Therefore a supplied lambda-list must not
include an argument for the block. Similarly a supplied lambda-list in def i ne- f or ei gn- f uncal | abl e should not include
an argument for the function.

defi ne-f or ei gn- bl ock-i nvoker returnsthe-name.

defi ne- f or ei gn- bl ock-i nvoker isimplemented in LispWorks for Macintosh only.

Examples

(exanple-edit-file "fli/foreign-blocks")

(example-edit-file "fli/invoke-foreign-block")

See also

define-foreign-funcallable
define-foreign-function

f or ei gn- bl ock- poi nter

5.7 Block objectsin C (foreign blocks)

75

7 Function, Macro and Variable Reference

define-foreign-callable

Summary

Defines aforeign callable, which isabody of Lisp code that can be called as a function from aforeign language.

Package

fli

Signature

define-foreign-callabl e (foreign-name &ey encode language result-type result-pointer no-check calling-convention)

({argt*) &body body => foreign-name

arg ::= arg-name | (arg-name arg-type)
language ::= :c | :ansi-c
Arguments

foreign-namel]

A string or symbol naming the foreign callable code that is created.

encodel] Oneof : source, : obj ect, :lispordbcs.
languagel] The language in which the foreign calling code iswritten. The default is: ansi - c.
result-typel] The FLI type of the foreign callable code's return value which is passed back to the calling

result-pointer]

no-check

calling-convention(]

code.

A variable which will be bound to aforeign pointer into which the result should be written
when the result-type is an aggregate type.

A boolean.

Specifies the calling convention used on Windows and ARM.

arg The arguments of the foreign callable code. Each argument can consist either of an arg-
name, in which case LispWorks assumesitisan: i nt, or an arg-name and an arg-type,
whichisaFLI type.

body[] Forms which make up the foreign callable code.

a_rg-nan‘eD A LISp SymbOl

Values

foreign-name A string or symbol naming the foreign callable code that is created.

Description

Themacro def i ne- f or ei gn- cal | abl e definesaforeign callable, which isabody of Lisp code that can be called from a
foreign language, for example from a C function. When the foreign callableis called, data passed to it is converted to the
appropriate FLI representation, which istranslated to an appropriate Lisp representation for the body of code. Once the body
of the foreign callable exits, any return values are converted back into a FLI format to be passed back to the calling language.

76

7 Function, Macro and Variable Reference

Whenyou use: ref erence with: 1i sp-to-foreign-p t asanarg-type, you need to set arg-name to the value that you
want to return in that reference. That valueis then converted and stored into the pointer supplied by the calling foreign
function. Thisis done after the visible body of your def i ne- f or ei gn- cal | abl e form returns.

If no-checkisni |, the result of the foreign callable, produced by body, is checked to see if matches result-type, and an error
israised if they do not match. If no-check ist then this check is not done and the effect will be undefined if the types do not
match.

calling-convention is ignored on platforms other than Windows and ARM, where there is no calling convention issue. On 32-
bit Windows, : st dcal | isthe calling convention used to call Win32 API functions and matches the C declarator

' __stdcal I ". Thisisthedefault value. : cdecl isthe default calling convention for C/C++ programs and matches the C
declarator " __cdecl ". See4.2.1 Windows 32-bit calling conventions for details.

On ARM platforms, thereis also more than one calling convention, but normally you do not need to specify it. See 4.2.2
ARM 32-bit calling conventions and 4.2.3 ARM 64-bit calling conventions for details.

When result-type is an aggregate type, an additional variable is bound in body to allow the value to be returned (the value
returned by body isignored). Thisargument is named after result-pointer or isnamed r esul t - poi nt er inthe current
package if result-pointer is unspecified. While body is executing, the variable will be bound to aforeign pointer that points to
an object of the type result-type. body must set the dotsin this foreign object in order for the value to be returned to the
caller.

To make aforeign function pointer referencing aforeign callable named " Foo" , use:
(rmake- poi nter :synbol -nane "Foo")

By default, LispWorks performs automatic name encoding to translate foreign-name. If you want to explicitly specify an
encoding, encode can be one of the following:

:source foreign-name is the name of the function asin the foreign source code. Thisis the default value
of encode when foreign-name is a string.

: obj ect foreign-name is the literal name of the function asin the foreign object code.

:lisp If foreign-nameisaLisp symboal, it must be trandated and encoded. Thisisthe default value of
encode if foreign-name is a symbol.

: dbcs A suffix is automatically appended to foreign-name depending on the Windows operating system
that LispWorksrunsin. The suffix is"A" for Windows 95-based systems and "W for Windows
NT-based systems.

Notes

1. For adelivered application where the string name of your foreign callable is not passed in dil-exports, be aware that a
call to make- poi nt er like that above will not retain the foreign callable in a delivered application. Internally aLisp
symbol named | %-ORElI G\- CALLABLE/ Foo| isused so you could retain that explicitly (see the Delivery User Guide
for details, and take care to specify the package). However it is simpler to name the foreign callable with your Lisp
symbol, and pass that to nake- poi nt er . Thiscall will keep your foreign callable in the delivered application:

(make-poi nter :synbol-name 'foo :functionp t)

2. If you specify any of the FLI float types: f | oat , : doubl e, : i sp-float, :lisp-single-float andso on, thenthe
value of language should be: ansi - c.

Compatibility note

64-bit integer typessuch as(:1ong :1ong), :int 64 and: ui nt 64 are now supported for arg-type in

77

7 Function, Macro and Variable Reference

defi ne-forei gn-cal | abl e in 32-bit LispWorks. In 32-bit LispWorks 6.1 and earlier versions, these types could only be
used by def i ne-f orei gn-functi on.

Examples

The following example demonstrates the use of foreign callable. A foreign callable function, squar e, is defined, which takes
an integer asits argument, and returns the square of the integer.

(fli:define-foreign-callable
("square" :result-type :int)
((arg-1 :int)) (* arg-1 arg-1))

The foreign callable function, squar e, can now be called from aforeign language. We can mimic aforeign call by using the
defi ne-f orei gn-functi on macroto defineaFLI functionto call square.

(fli:define-foreign-function (call-tw "square")
((in-arg :int)) :result-type :int)

Thecal | -t wo function can now be used to call squar e. The next command is an example of this.

(call-two 9)

This last example shows how the address of aforeign callable can be passed via a pointer object, which is how you use
foreign callablesin practice. The foreign library in thisexampleislibgd:

(fli:define-foreign-callable ("gsl-error-handler")

((reason (:reference-return :ef-nb-string))

(file (:reference-return :ef-nb-string))

(l'ineno :integer)

(gsl-errno :integer))

(error

"Error nunber ~a inside GSL [file: ~a, lineno ~a]: ~a"
gsl-errno file lineno reason))

(fli:define-foreign-function gsl-set-error-handler
((func :pointer))
:result-type :pointer)

To set the error handler, you would do:

(gsl-set-error-handl er
(fli:make-pointer :synbol-nane "gsl-error-handler"))

See also

define-foreign-function
define-foreign-variable
nmake- poi nt er

4 Defining foreign functions and callables
5.7.2 Operations on foreign blocks

78

7 Function, Macro and Variable Reference

define-foreign-converter Macro

Summary

Defines anew FLI type specifier that convertsto or from another type specifier.

Package

fli

Signature

define-foreign-converter typename lambda-list object-names &key foreign-type foreign-to-lisp lisp-to-foreign
predicate tested-value error-form documentation => type-name

object-names : : = object-name | (lisp-object-name foreign-object-name)

Arguments

type-namel] A symbol naming the new FLI type.

lambda-list] A lambda list which isthe argument list of the new FLI type.
object-names] A symbol or alist of two symbols.

foreign-typel] A macro expansion form that evaluatesto a FL 1 type descriptor.
foreign-to-lispC] A macro expansion form to convert between Lisp and the FLI.
lisp-to-foreignC] A macro expansion form to convert between the FL1 and Lisp.
predicatel] A macro expansion form to check whether a Lisp object is of thistype.
tested-valuel] A macro expansion form to give an error if aLisp object isnot of thistype.
error-formc] A macro expansion form to give an error if predicate returns false.
documentationC] A string.

object-namel], lisp-object-namel], foreign-object-namel]

Lisp symbols.
Values
type-name The name of the new FLI converter type.
Description

Note: thismacro isfor advanced use of the FLI type system. Seedef i ne-f or ei gn-t ype for simple aliasing of FLI type
descriptors.

Themacro def i ne-f or ei gn- convert er definesanew FLI type specifier type-name that wraps another FL1 type specifier
and optionally performs data conversion and type checking. The string documentation is associated with type-name with the
defi ne-f or ei gn- t ype documentation type.

The lambdal list of the new FLI type specifier islambda-list and its variables are available for usein foreign-type, foreign-to-
lisp, lisp-to-foreign, predicate and tested-value.

79

7 Function, Macro and Variable Reference

If object-namesis a symbol object-name, then it provides the name of avariable for use in al of the macro expansion forms.
Otherwise object-names should be alist of the form (lisp-object-name foreign-object-name), where lisp-object-name provides
the name of avariable for usein lisp-to-foreign, predicate and tested-value forms and forei gn-obj ect-name provides the name
of avariable for usein foreign-to-lisp.

When the new FLI typeis used, foreign-type is evaluated to determine the underlying FLI type descriptor to be converted. It
can use variables bound by lambda-list, but not object-names.

When type-name is used to convert aforeign valueto Lisp (for example when as the result-typein

defi ne-forei gn-function), foreign-to-lisp is evaluated to determine how the conversion should be made. It works like a
macro expansion function, so should return aform that converts the foreign value, which will be bound to object-name (or
foreign-object-name). It can use variables bound by lambda-list.

When type-nameis used to convert a Lisp value to aforeign value (for example in the argument list of
defi ne-f or ei gn- f unct i on), thetype of the Lisp value can be checked before conversion using tested-value and
predicate and then converted using lisp-to-foreign as detailed below.

If tested-value is specified, it isused as a macro expansion function that returns a form that must return object-name (or lisp-
object-name) if it is of the required type or give an error. It can use variables bound by lambda-list, but not object-names.

Otherwise, if predicateis specified, it is used as a macro expansion function that returns aform that must return true if object
-name (or lisp-object-name) is of the required type. If predicate is specified, then error-form can be specified as a macro
expansion function that signals an error about object-name (or lisp-object-name) not being of the required type. If error-form
isomitted, adefault error issignaled. Both predicate and error-form can use variables bound by lambda-list, but not object-
names.

If both tested-val ue and predicate are omitted, then no type checking is performed.

After type checking, lisp-to-foreign is used as a macro expansion function that returns a form that converts the Lisp object
object-name (or lisp-object-name) to the underlying FLI type foreign-type. It can use variables bound by lambda-list, but not
object-names.

Examples

ThisdefinesaFLI type(r eal - doubl e lisp-type) , which allows any real value in Lisp to be passed to foreign code as a
double precision float. When aforeign valueis converted to Lisp, it is coerced to type:

(fli:define-foreign-converter real-double (lisp-type)

obj ect
:foreign-type :double
:foreign-to-lisp “(coerce ,object ',lisp-type)

:lisp-to-foreign “(coerce ,object 'double-float)
:predicate “(realp ,object))

ThisdefinesaFLI typei nt - si gnum which uses-1, 0 and 1 for values on the foreign side. Thereis no foreign-to-lisp form
specified, so it will return these values to Lisp too:

(fli:define-foreign-converter int-signum () object
:foreign-type :int
:lisp-to-foreign "~ (signum, object))

ThisdefinesaFLI type (bi gger-in-1isp n), whichisan integer type for values that are n bigger in Lisp than on the
foreign side.

(fli:define-foreign-converter bigger-in-lisp
(&optional (n 1))
obj ect
:foreign-type :int

80

7 Function, Macro and Variable Reference

:foreign-to-lisp “(+ ,o0bject ,n)
:lisp-to-foreign “(- ,object ,n)
:predicate " (integerp ,object))

(fli:with-dynam c-foreign-objects ((x :int 10))
(fli:dereference x :type '(bigger-in-lisp 2))) => 12

See also

define-foreign-type
defi ne- opaque- poi nt er

: wr apper
2.3 Parameterized types

define-foreign-forward-reference-type Macro

Summary

DefinesaFLI type specifier if it is not already defined.

Package

fli

Signature

define-foreign-forward-reference-type typename lambda-liss &ody forms => type-name

Arguments

type-namel] A symbol naming the new FLI type.

lambda-list[] A lambdalist which is the argument list of the new FLI type.
forms] One or more Lisp forms which provide a definition of the new type.
Values

type-name The name of the FLI type.

Description

Themacro def i ne- f or ei gn-f or war d- r ef er ence- t ype definesanew FLI type called type-name, unless type-nameis
aready defined. This macro is useful when atype declaration is needed but the full definition is not yet available.

lambda-list and forms are used asin def i ne-f or ei gn-t ype.

See also

define-foreign-type
def i ne- opaque- poi nter

8l

7 Function, Macro and Variable Reference

define-foreign-funcallable Macro

Summary

Defines a Lisp function which, when passed a pointer to aforeign function, callsit.

Package

fli

Signature

define-foreign-funcall abl e thename args &ey lambda-list documentation result-type language no-check calling-
convention variadic-num-of-fixed => the-name

args ::= ({arg}*)

Arguments

the-nameld A symbol naming the Lisp function.

lambda-list] The lambda list to be used for the defined Lisp function.

documentation(] A documentation string for the foreign function.

result-typel] A foreign type.

language The language in which the foreign source code is written. The defaultis: ansi - c.
no-check] A boolean.

Ca”ing-conventionD Sp&:lfles the Calllng convention used.

variadic-num-of-fixed
ni | or anon-negative integer.

argd] Argument specifier asindef i ne-f or ei gn-f uncti on.
Values

the-name A symbol naming the Lisp function.

Description

Themacro def i ne-f orei gn-funcal | abl e islikedefi ne-forei gn-functi on, but creates afunction with an extra
argument at the start of the argument list for the address to call.

Seedefi ne-f or ei gn- f unct i on for how the-name, lambda-list, documentation, result-type, language, no-check, calling-
convention, variadic-num-of-fixed and arg are used.

Examples

Define acaller for this shape:

(fli:define-foreign-funcallable
call-with-string-and-int
((string (:reference-pass :ef-nb-string))

82

7 Function, Macro and Variable Reference

(value :int)))

Call pri nt f. Note that the output goes to console output which is hidden by default:

(let ((printf-func
(fli:make-pointer :synbol-name "printf")))
(call-with-string-and-int
printf-func "printf called with %d" 1234))

See also

defi ne-foreign-function

define-foreign-function Macro

Summary

Defines a Lisp function which acts as an interface to a foreign function.

Package

fli

Signature

define-foreign-function name ({arg}*) &key lambda-list documentation result-type result-pointer language no-
check calling-convention module variadic-num-of-fixed => lisp-name

name : : = lisp-name | (lisp-name foreign-name [encoding])
encoding ::= :source | :object | :lisp | :dbcs
arg ::= arg-name | (arg-name arg-type) | (:constant value valuetype) | &optional | &ey | ((arg-name

default) arg-type) | (:ignore arg-type)

language : := :c | :ansi-c

Arguments

lambda-list[] The lambda list to be used for the defined Lisp function.

documentation(] A string.

result-typel] A foreign type.

result-pointer (] The name of the keyword argument that is added to the lambda-list of the Lisp function
when result-type is an aggregate type.

languagel] The language in which the foreign source code iswritten. The default is: ansi - c.

no-check(] A boolean.

calling-convention[Specifies the calling convention used.

moduled A symbol or string naming the module in which the foreign symbol is defined.

variadic-num-of-fixed[]
ni | or anon-negative integer.

83

7 Function, Macro and Variable Reference

lisp-nameL] A symbol naming the defined Lisp function.

foreign-name] A string or a symbol specifying the foreign name of the function.
arg-namel] A variable.

arg-typel A foreign type name.

valuell A Lisp object.

val ue-type] A foreign type name.

defaultd] A Lisp abject.

Values

lisp-name A symbol naming the defined Lisp function.

Description

Themacro def i ne-f or ei gn-f uncti on definesaLisp function lisp-name which acts as an interface to a foreign language
function, for example a C function. When the Lisp function is called its arguments are converted to the appropriate foreign
representation before being passed to the specified foreign function. Once the foreign function exits, any return values are
converted back from the foreign format into a Lisp format.

encoding specifies how lisp-name is tranglated into the function name in the foreign object code. Its values are interpreted as
follows:

:source foreign-name is the name of the function in the foreign source code. Thisisthe default value of
encoding when foreign-name is a string.

: obj ect foreign-name s the literal name of the function in the foreign object code.

:lisp If foreign-nameisaLisp symbol, it must be transated and encoded. Thisisthe default value of

encoding if foreign-name isa symbol.

: dbcs A suffix is automatically appended to the function name depending on the Windows operating
system that LispWorks runsin. The suffix is"A" for Windows 95-based systems and "W for
Windows NT-based systems.

The number and types of the arguments of lisp-name must be given. Lisp arguments may take any name, but the types must
be accurately specified and listed in the same order asin the foreign function, unless otherwise specified using lambda-list.

If arg isasymbol arg-name, then def i ne- f or ei gn-f uncti on assumesthat itisof type: i nt . Otherwise arg-type or
value-type specifies the foreign type of the argument.

If argisof theform (: const ant value value-type) then value is always passed through to the foreign code, and arg is
omitted from the lambdallist of lisp-name.

If argis&opti onal or &ey, then thelambdalist of the Lisp function lisp-name will contain these lambda:-list-keywords
too. Any argument following &opt i onal or &ey can use the
((arg-name default) arg-type) syntax to provide a default value default for arg-name.

If argisof theform (:i gnore arg-type) thenni | isaways passed through to the foreign code and arg is omitted from the
lambdallist of lisp-name. Thisis generally only useful when arg-typeisa: r ef er ence-r et ur n type, where the value ni |
will be ignored.

If documentation is supplied then it is set asthef unct i on documentation for lisp-name.

When languageis: ansi - ¢ the foreign code is expected to be written in ANSI C. In particular single floats are passed

84

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm
http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

7 Function, Macro and Variable Reference

through as single-floats whereas language : ¢ causes them to be passed through as double floats. Similarly : ¢ causes double
floats to be returned from C and : ansi - ¢ causes asingle-floats to be returned. In both casesthetypereturned to Lisp is
determined by result-type.

If no-checkisni |, then the types of the arguments provided when lisp-name is called are compared with the expected types
and an error israised if they do not match. If no-checkist then this check is not done and the effect will be undefined if the
types do not match. If the compilation safety level is set to 0 then no-check defaultstot , otherwiseit defaultstoni | .

lambda-list allows you to define the order in which the Lisp function lisp-name takes its arguments to be different from the
order in which the foreign function takes them, and to use standard lambda list keywords such as &opt i onal evenif they do
not appear in args. If lambda-list is not supplied, the lambdallist of lisp-name is generated from the list of args.

If arg-type is a struct then the value arg-name can be either aforeign struct object or a pointer to aforeign struct object.

The:reference, : reference- pass and: r ef er ence-r et ur n types are useful with def i ne-f or ei gn-functi on. It
isfairly common for a C function to return avalue by setting the contents of an argument passed by reference (that is, asa
pointer). This can be handled conveniently by using the: r ef er ence- r et ur n type, which dynamically allocates memory
for the return value and passes a pointer to the C function. On return, the pointer is dereferenced and the value is returned as
an extramultiple value from the Lisp function.

The: r ef er ence- pass type can be used to automatically construct an extralevel of pointer for an argument. No extra
results are returned.

The:reference typeislike: ref erence-ret urn but allowstheinitial value of the reference argument to be set.

result-type optionally specifies the type of the foreign function's return value. When result-type is an aggregate type, an
additional keyword argument is placed in the lambda-list of the Lisp function. This keyword is named after result-pointer or
iscaled: resul t - poi nt er if unspecified. When calling the Lisp function, aforeign pointer must be supplied as the value
of this keyword argument, pointing to an object of type result-type. The result of the foreign call iswritten into this object
and the foreign pointer is returned as the primary value from the Lisp function. This allows the caller to maintain control over
the lifetime of this object (in C thiswould typically be stored in alocal variable). If result-typeis: voi d or is omitted, then
no value is returned.

calling-convention is ignored on some platforms, where there is no calling convention issue. On 32-bit Windows, : st dcal |
isthe calling convention used to call Win32 API functions and matchesthe C declarator " __st dcal | ". Thisisthe default
value. : cdecl isthe default calling convention for C/C++ programs and matches the C declarator " __cdecl ". See4.2.1
Windows 32-bit calling conventions for details.

On ARM platforms, there is also more than one calling convention, but normally you do not need to specify it. See 4.2.2
ARM 32-bit calling conventions and 4.2.3 ARM 64-bit calling conventions for details.

On 32-hit x86 platforms (including 32-bit Windows), the: f ast cal | calling convention can be use (see 4.2.4 Fastcall on 32
-bit x86 platformsfor details).

If module is the name of amodule registered using r egi st er - nodul e then that moduleis used to look up the symbol.
Otherwise module should be a string, and a module named module is automatically registered and used to ook up the
symbol. Such automatically-registered modules have connection-style : manual - this prevents them being used by other
def i ne-f orei gn-functi on formswhich do not specify a module.

When variadic-num-of-fixed is a non-negative integer, it specifies that the foreign function that it is calling is variadic (like
print f). Theinteger must be the number of fixed arguments that the foreign function takes. For pri nt f, for example, you
needto pass: vari adi c-num of - fi xed 1, andforsprintf youneed: vari adi c- num of -fi xed 2. When variadic-
num-of-fixed isni | (the default), then the function is specified to be not variadic. Callsto variadic functions without using
variadic-num-of-fixed work on some platforms, but not all. Thus you should always use it when calling variadic functions.
variadic-num-of-fixed does not affect the number of arguments that you need to supply when calling lisp-name; it only
affects how the foreign function itself is called on platforms where that is important.

85

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

7 Function, Macro and Variable Reference

Compatibility notes

In LispWorks 4.4 and previous versions, the default value for languageis: c. In LispWorks 5.0 and later, the default valueis
;ansi-c.

The: f ast cal | calling-convention was added in LispWorks 7.1.

variadic-num-of-fixed was added in LispWorks 7.1.

Examples

A simple example of the use of def i ne-f or ei gn-functionisgivenin 1.2.2 Defining a FL I function. More detailed
examples are givenin 5 Advanced Uses of the FLI.

Hereisan exampleusing the: r ef er ence- r et ur n type.

Non-Windows version:

int cfloor(int x, int y, int *remainder)
{

int quotient = x/vy;

*remai nder = x - y*quotient;

return quotient;

}
Windows version:

__decl spec(dll export) int __cdecl cfloor(int x, int y, int *remainder)

{
int quotient = x/vy;
*renmmi nder = x - y*quotient;
return quotient;

}

In this foreign function definition the main result is the quotient and the second return value is the remainder:

(fli:define-foreign-function cfloor
((x :int)
(y :int)
(rem (:reference-return :int)))
‘result-type :int)

(cfloor 11 5 t)

=>
2,1

Thisexampleillustrates a use of the lambda list keyword &opt i onal and a default value for the optional argument:

(define-foreign-function one-or-two-ints
((arg-one :int)
&opt i ona
((arg-two 42) :int)))

Thecal (one-or-two-ints 1 2) passesland?2.

Thecal (one-or-two-ints 1) passesland42.

See also

define-foreign-callable

86

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

7 Function, Macro and Variable Reference

define-foreign-funcallable
define-foreign-variable

regi ster-nmodul e

4 Defining foreign functions and callables

define-foreign-pointer Macro

Summary

Definesanew FLI pointer type.

Package
fli
Signature

defi ne-forei gn-poi nter name-and-options points-to-type & est dots => type-name

name-and-options : : = type-name | (type-name (option*))
option :: = (option-name option-value)

Arguments

points-to-typel] A foreign type.

sots Slots of the new type.

type-namel] A symbol naming the new FLI type.
option-namel] callow nul | oradefstruct option.
option-valuel] A symbol.

Values

type-name The name of the new FLI pointer type.
Description

Themacro def i ne- f or ei gn- poi nt er definestwo things:
» An FLI pointer type type-name, which is a pointer to points-to-type.
* A Lisp type specifier type-name that is aforeign pointer.

Theoption: al | ow nul | takes an option-value of eithert or ni | , defaulting to ni | . It controls whether the type type-name
acceptsni | .

The other alowed values for option-name are the def st r uct options: conc- nare, : constructor, : predi cate,
:print-object,:print-function. Ineach casethe symbol supplied as option-value provides the corresponding option
for type-name.

dotsisalist of def st r uct sot-descriptions which become dots in type-name.

When LispWorks makes aforeign pointer of type type-name, then an object of Lisp type type-name is made instead of a

87

http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defstr.htm

7 Function, Macro and Variable Reference

foreign pointer object. Thisisuseful if you want to associate extra Lisp datawith the foreign pointer object, using sots.

See also

3.1.1 Creating pointers

define-foreign-type Macro

Summary

Definesanew FLI type specifier.

Package

fli

Signature

define-foreign-type name-and-options lambda-list &ody forms => name

name-and-options : : = name | (nhame option*)

option :: = (:foreign-name foreign-name)

Arguments

lambda-list] A lambdalist which is the argument list of the new FLI type.
forms] One or more Lisp forms which provide a definition of the new type.
name’] A symbol naming the new FLI type.

foreign-namer] A string specifying the foreign name of the type.

Values

name The name of the new FLI type.

Description

Themacro def i ne-f or ei gn-t ype definesanew FLI type called name, with optional foreign name foreign-name.

When name is used as aforeign type, forms are evaluated as an implicit pr ogn with the variables in lambda-list bound to the
arguments of the foreign type. The value returned by formsis used as the definition of the foreign type. Thisis similar to how
def t ype worksfor Lisp type specifiers.

Notes

foreign-name, specifying the foreign name, is supported only for documentation purposes.

Examples

In the following example an integer array type specifier is defined. Note that the type takes alist as its argument, and uses
this to determine the size of the array.

88

http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_deftp.htm

7 Function, Macro and Variable Reference

(fli:define-foreign-type int-array (di nensions)
“(:c-array :int , @i nensions))

(setqg nunber-array (fli:allocate-foreign-object
:type '(int-array (2 2))))

In the next example a boolean type, called bool , with the same size as an integer is defined.

(fli:define-foreign-type bool () “(:boolean :int))

(fli:size-of bool)

See also

defi ne-c-typedef

defi ne-foreign-converter

defi ne-foreign-forward-reference-type
foreign-type-equal -p

2FLI Types

5.4 Defining new types

define-foreign-variable Macro

Summary

Defines a Lisp function to access a variable in foreign code.

Package

fli

Signature

defi ne-foreign-variabl e the-name &key type accessor language no-check module => lisp-name

the-name : : = lisp-name | (lisp-name foreign-name [encoding])

encoding ::= :source | :object | :lisp | :dbcs

accessor ::= :value | :address-of | :read-only | :constant

language ::= :c | :ansi-c

Arguments

the-name Names the Lisp function which is used to access the foreign variable.

typel] The FLI type corresponding to the type of the foreign variable to which Lisp is interfacing.
Thedefaultis:int.

languagel] The language in which the foreign source code for the variable is written. The default is
ransi-c.

no-check(] A boolean.

module] A string or symbol naming the module in which the foreign variable is defined.

lisp-name] A symbol naming the Lisp accessor.

89

7 Function, Macro and Variable Reference

foreign-namel] A string or asymbol specifying the foreign name of the variable.
Values

lisp-name A symbol naming the Lisp accessor.

Description

The macro def i ne-f or ei gn-vari abl e definesaLisp accessor lisp-name which can be used to get and set the value of a
variable defined in foreign code.

accessor specifies what kind of accessor is generated for the variable. 1t can be one of the following:

:val ue The value of the foreign variable is returned directly and is the default when typeisanon-
aggregate type. If typeisan aggregate type, then acopy of the object is allocated using
al | ocat e-f or ei gn- obj ect , and the copy is returned. In generdl, it is more useful to use
accessor : addr ess- of for aggregate types, to alow the original aggregate to be updated.

: addr ess- of Returns an FLI pointer pointing to the foreign variable.

:read-only Ensuresthat no set f expander is defined for the variable, which means that its value can be
read, but it cannot be set.

: const ant Islike: r ead- onl y and will return a constant value. For example, thisis more efficient for a
variable that always points to the same string.

If the foreign variable has atype corresponding to an FLI aggregate type, then accessor must be supplied (there is no default).

encoding controls how the Lisp variable name is translated to match the foreign variable namein the foreign DLL. encoding
can be one of the following:

:source Tells LispWorks that foreign-name is the name of the variable in the foreign source code. Thisis
the default value of encoding when foreign-name is a string.

: obj ect Tells LispWorks that foreign-name is the literal name of the variable in the foreign object code.

‘lisp Tells LispWorks that if foreign-nameis aLisp symbol, it must be trandated and encoded. Thisis

the default value of encoding if foreign-name is a symbol.

: dbcs M odifies the variable name on Windows, as described for def i ne- f or ei gn-f uncti on.

If no-checkisni | , then the type of the value is provided to the set f expander for lisp-name is compared with type and an
error israised if it does not match. If no-check ist then this check is not done and the effect will be undefined if the type
does not match. If the compilation safety level is set to 0 then no-check defaultsto t , otherwise it defaultstoni | .

Notes

If you specify any of the FLI float types: | oat, : doubl e, : i sp-float, :|isp-single-float andsoon, thenthe
value of language should be: ansi - c.

module is processed asfor def i ne-f or ei gn-functi on.

Examples

The following example illustrates how to use the FLI to define aforeign variable, given the following C variableinaDLL:

int num

90

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 Function, Macro and Variable Reference

Thefirst example defines aLisp variable, nuni, to interface with the C variable num
(fli:define-foreign-variable (numl "nuni') :type :int)

The following commands return the value of num and increase its value by 1.
(nunt)
(incf (numl))

In the next example, the Lisp variable nun interfaces with numin aread-only manner.

(fli:define-foreign-variable (nun2 "nuni)
:type :int :accessor : READ O\LY)

In this case, the next command still returns the value of num but the second command raises an error, because nun? is read-
only.

(nunt)
(incf (nunR))
Thefinal example defines aLisp variable, nunB, which accesses numthrough pointers.

(fli:define-foreign-variable (nun8 "nuni)
:type :int :accessor :address-of)

Asaresult, the next command returns a pointer to num and to obtain the actual value stored by num nun8 needs to be
dereferenced.

(nunB)

(fli:dereference (nunB))

See also

define-foreign-callable
define-foreign-function

define-opaque-pointer Macro

Summary

Defines an opague foreign pointer type.

Package

fli

Signature

defi ne- opaque- poi nt er pointer-type structure-type

91

7 Function, Macro and Variable Reference

Arguments
pointer-typel] A symbol.
structure-typel] A symbol.
Description

The macro def i ne- opaque- poi nt er defines an opaque foreign pointer type named pointer-type and foreign structure type
with aname based on structure-type. An opague pointer is a pointer to a structure which does not have a structure
description. It isthe equivalent to the C declaration:

typedef struct structure-type * pointer-type;

An opague pointer is useful for dealing with pointers that are returned by foreign functions and are then passed to other
foreign functions. It checks the type of the foreign pointer, and thus prevents passing pointers of the wrong type.

Examples

Using the C standard file* pointer:

(fli:define-opaque-pointer file-pointer file)

(fli:define-foreign-function fopen
((name (:reference-pass :ef-nb-string))
(rmode (:reference-pass :ef-nb-string)))
:result-type file-pointer)

(fli:define-foreign-function fgetc
((file file-pointer))
:result-type :int)

(fli:define-foreign-function fclose
((file file-pointer)))

(fli:define-foreign-function fgets
((string
(:reference-return (:ef-nb-string :limt 200)))
(:constant 200 :int)
(file file-pointer))
:result-type (:pointer-integer :int)
:lanbda-list (file &ux string))

(defun print-a-file (name)
(let ((file-pointer (fopen name "r")))
(if (fli:null-pointer-p file-pointer)
(error "failed to open ~a" nane)
(unwi nd- prot ect
(loop (nultiple-value-bind (res |line)
(fgets file-pointer)
(when (zerop res) (return))
(princ line)))
(fclose file-pointer)))))

See also

define-foreign-type

92

7 Function, Macro and Variable Reference

dereference Accessor

Summary

Accesses and returns the value of aforeign object.

Package

fli

Signature
der ef erence pointer &ey index type copy-foreign-object => value

setf (dereference pointer &ey index type copy-foreign-object) value => value

Arguments

pointer] Aninstance of aFLI pointer.

index An integer.

typel] A foreign type.

Copy_forei gn_obj ect] Oneoft,nil or:error.

value The value of the dereferenced object at pointer.
Values

value The value of the dereferenced object at pointer.
Description

The accessor der ef er ence accesses and returns the value of the FLI object pointed to by pointer.

If index is supplied, der ef er ence assumes that pointer points to one element in an array of object, and returns the element
with index index in the array.

If typeissupplied, then der ef er ence assumes that pointer pointsto an object of that type, overriding the type in pointer
itself.

copy-foreign-object is only used when the type of pointer (or typeif supplied) is an aggregate type, because objects of these
types cannot be converted to aLisp value. If copy-foreign-object ist , der ef er ence makes a copy of the aggregate object
pointed to by pointer and returns the copy. If copy-foreign-object isni | , der ef er ence returns the aggregate object directly.
If copy-foreign-objectis: err or (the default) then der ef er ence signals an error.

The value of an object at pointer can be changed using the set f form of der ef er ence. See the examples section for an
example of this.

An error issignaled if pointer isanull pointer. You can usenul | - poi nt er - p to detect null pointers.

Compatibility note

64-bit integer typessuch as(:1ong :1ong), :int 64 and: ui nt 64 are now supported for typein der ef er ence in 32-bit
LispWorks. In 32-bit LispWorks 6.1 and earlier versions, these types could only be used by def i ne- f or ei gn-f uncti on.

93

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 Function, Macro and Variable Reference

Examples

In the following example a LONG type is defined and an instance, pointed to by poi nt , with a specified initial value of 10 is
created with memory allocated using al | ocat e- f or ei gn- obj ect . Theder ef er ence function is then used to get the
value that poi nt pointsto.

(fli:define-c-typedef LONG :Iong)

(setqg point (fli:allocate-foreign-object
ctype ' LONG
cinitial-elenent 10))

(fli:dereference point)

Finally, the value of the object of type LONGis changed to 20 using the set f form of der ef er ence.

(setf (fli:dereference point) 20)

In the next example, aboolean FLI typeisdefined, but is accessed asachar .

(fli:define-c-typedef BOOL (:boolean :int))
(setqg point2 (fli:allocate-foreign-object :type 'BOCL))

(fli:dereference point2 :type :char)

See also

al l ocat e-foreign-object

free-foreign-object

forei gn-sl ot-val ue

nul |l -pointer-p

2FLI Types

3.3 Pointer dereferencing and coercing

5.2.5 Calling a C function that takes an array of strings

disconnect-module Function

Summary

Disconnects the DLL associated with aregistered module.

Package

fli

Signature

di sconnect - nodul e name &key verbose remove => result

Arguments
name[] A symbol or string.
verbose] nil,t or anoutput stream.

94

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 Function, Macro and Variable Reference

removel] A boolean.

Values

result nil,t or:renoved.
Description

The function di sconnect - modul e disconnects the DLL associated with a registered module specified by name and
registered with r egi st er - nodul e.

When disconnecting, if verboseis a stream, then di sconnect - nodul e will send disconnection information to that stream.
If verboseist , thisisinterpreted as standard output. The default value of verboseisni | .

If removeisni | then after disconnection the module will be in the same state as it was when first registered by

r egi st er - nodul e, that is, lookups for foreign symbols can still automatically reconnect the DLL. If remove is non-nil then
name is removed from the list of registered modules. Any foreign symbols which refer to the module will then be reset as
unresolved symbols. The default value of removeisni | .

di sconnect - nodul e returnst if it actually disconnected the module, which means it unloaded the foreign module, but has
not removed the module. It returns: r enoved when it also removed the module. Note that when di sconnect - nodul e is
supplied with anon-nil remove, it may still decline to remove the module if there are symbols which are explicitly associated
withe the module (for example by by passing : nodul e to def i ne-f or ei gn-functi on). ni | isreturnedif it failsto find
the module, or it was not already connected before the call and was not removed by the call.

See also

regi ster-nodul e

enum-symbol-value

enum-value-symbol

enum-values

enum-symbols

enum-symbol-value-pairs Functions

Summary

Finds values and symbolsin a FLI enumerator type.

Package

fli

Signatures

enum synbol - val ue enum-type symbol => value
enum val ue- synbol enum-type value => symbol
enum val ues enumtype => values

enum synbol s enumtype => symbols

95

7 Function, Macro and Variable Reference

enum synbol - val ue- pai rs enumtype => pairs

Arguments

enum-typel] A FLI enumerator type defined by def i ne- c- enum
valuell An integer.

Values

value Aninteger or ni | .

symbol A symbol orni | .

values A list.

symbols Alist.

pairs A list of conses.

Description

The function enum symnbol - val ue returns the value value of symbol symbol in the FLI enumerator type enum-type, or ni |
if enum-type does not contain symbol.

The function enum val ue- synbol returns the symbol symbol in the FLI enumerator type enum-type at value value, or ni |
if value is out of range for enum-type.

The functionsenum val ues, enum synbol s and enum synbol - val ue- pai r s respectively return alist of the values,
symbols and pairs for enum-type, where a pair is a cons of symbol and value.

enum-type must be defined by def i ne- c- enum

Examples

(fli:define-c-enumcolors red green bl ue)
=
(: ENUM COLORS)

(fli:enum synbol -val ue ' COLCRS ' red)
=
0

(fli:enumval ue-synbol ' COLCRS 0)
=
RED

(fli:define-c-enumhalf_year (jan 1) feb mar apr nmay jun)
=
(: ENUM HALF_YEAR)

(fli:enum synbol -val ue ' HALF_YEAR ' f eb)
=

2

(fli:enumval ue-synmbol 'HALF_YEAR 2)

=

FEB

(fli:enum synbol -val ue-pairs ' HALF_YEAR)
((JAN . 1) (FEB. 2) (MAR. 3) (APR . 4) (MAY . 5) (JUN. 6))

96

7 Function, Macro and Variable Reference

See also

def i ne-c- enum

fill-foreign-object Function

Summary

Fillsaforeign object, given a pointer to it.

Package

fli

Signature

fill-foreign-object pointer &ey nelems byte => pointer
Arguments

pointer] A foreign pointer.

nelems] A non-negative integer. The defaultis1.
bytel] Aninteger. The default isO.

Values

pointer The foreign pointer.

Description

Thefunctionfill -forei gn-obj ect fillsthe pointer pointer with the value byte. If nelemsis greater than 1, an array of

objects starting at pointer isfilled.

Examples

(fli:with-dynanic-foreign-objects ()
(let ((pp (fli:allocate-dynanic-foreign-object
:type :char
cinitial-element 66
‘nelenms 6)))
(fli:fill-foreign-object pp :nelens 3 :byte 65)
(loop for i below 6 collect
(fli:dereference pp :type :char :index i))))
=>
(#\A #H\A #\ A #\ B #\ B #\ B)

See also

repl ace-foreign-object

97

7 Function, Macro and Variable Reference

foreign-aref Accessor

Summary

Accesses and returns the value at a specified point in an array.

Package

fli

Signature
forei gn-aref array & est subscripts => value

setf (foreign-aref array & est subscripts) value => value

Arguments

arrayl] A FLI array or apointer to aFLI array.
subscriptsQ] A list of valid array indices for array.
value An element of array.

Values

value An element of array.

Description

The accessor f or ei gn- ar ef accesses an element in array specified by subscripts and returnsits value if the element isan
immediate type. If it isan aggregate type, suchasa: struct, : uni on, or: c-array, anerror issignaled. The function
f or ei gn- array- poi nt er should be used to get access to such embedded aggregate data.

The value of an element in an array can be changed using the set f form of f or ei gn- ar ef . See the examples section for an
example of this.
Examples

In the first example, a3 by 3 integer array is created, and theset f form of f or ei gn- ar ef isused to set all the elements to
42.

(setqg arrayl (fli:allocate-foreign-object
:type '(:c-array :int 3 3)))

(dotimes (x 3)
(dotines (y 3)
(setf (fli:foreign-aref arrayl x y)

42)))

Next, f or ei gn- ar ef isused to dereference the value at position2 2 inarrayl. Remember that the count for the indices
of an array start at 0.

(fli:foreign-aref arrayl 2 2)

98

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 Function, Macro and Variable Reference

In the following example, an array of arrays of integersis created. When an element is dereferenced, a copy of an array of
integersis returned.

(setqg array2 (fli:allocate-foreign-object
:type '(:c-array (:c-array :int 3) 3)))

(fli:foreign-array-pointer array2 2)

The array returned can be bound to the variable ar r ay 3, and accessed using f or ei gn- ar ef again. Thistime aninteger is
returned.

(setq array3 *)

(fli:foreign-aref array3 1)

See also

2FLI Types

forei gn-array-di nensi ons
foreign-array-el enent-type
foreign-array-pointer

forei gn-typed- aref

foreign-array-dimensions Function

Summary

Returns alist containing the dimensions of an array.

Package

fli

Signature

forei gn-array-di nensi ons array-or-type => dimensions

Arguments

array-or-typel] A FLI1 array, apointer to aFLI array or the name of aFLI array type.
Values

dimensions A list containing the dimensions of array-or-type.

Description

The function f or ei gn- ar r ay- di mensi ons returns alist containing the dimensions of array-or-type.

Examples

In the following example an instance of a3 by 4 array is created, and these dimensions are returned using the
f or ei gn- array- di nensi ons function.

99

7 Function, Macro and Variable Reference

(setqg arrayl (fli:allocate-foreign-object
:type '(:c-array :int 3 4)))

(fli:foreign-array-dimensions arrayl)

See also

forei gn-aref
foreign-array-el enent-type
foreign-array-pointer

foreign-array-element-type

Summary

Returns the type of the elements of an array.

Package

fli

Signature

foreign-array-el ement-type array-or-type => type

Arguments

array-or-typel] A FLI array, apointer to aFLI array or the name of aFLI array type.
Values

type The type of the elements of array-or-type.

Description

Thefunction f or ei gn- ar r ay- el enent - t ype returns the type of the elements of array-or-type.

Examples

Function

In the following example a 3 by 4 array with integer elementsis defined, and thef or ei gn- arr ay- el enent - t ype function

is used to confirm that the elements of the array are indeed integers.

(setqg arrayl (fli:allocate-foreign-object
:type '(:c-array :int 3 4)))

(fli:foreign-array-el ement-type arrayl)

See also

forei gn-aref
forei gn-array-di nensi ons
forei gn-array- pointer

7 Function, Macro and Variable Reference

foreign-array-pointer

Summary

Returns a pointer to a specified element in an array.

Package

fli

Signature

forei gn-array-poi nter array & est subscripts => pointer

Arguments

arrayl] A FLI array or apointer to aFLI array.

subscriptsQ] A list of valid array indices for array.

Values

pointer A pointer to the element at position subscriptsin array.
Description

Function

Thefunction f or ei gn- arr ay- poi nt er returns apointer to an element in array specified by subscripts. You can then use

der ef erence orf orei gn- sl ot - val ue to access the value.

Examples

In this example a3 by 2 array of integersis created, and a pointer to the element at position 2 0 isreturned using

foreign-array-pointer.

(setqg arrayl (fli:allocate-foreign-object
itype '(:c-array :int 3 2)))

(setq array-ptr (fli:foreign-array-pointer arrayl 2 0))

Theset f form of der ef er ence can now be used to set the value pointed to by ar r ay- ptr.

(setf (fli:dereference array-ptr) 42)

See also

foreign-aref
forei gn-array-di nensi ons
foreign-array-el enent-type

101

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 Function, Macro and Variable Reference

foreign-block-copy Function

Summary

Makes a copy of aforeign block, in LispWorks for Macintosh.

Package

fli

Signature

f orei gn- bl ock- copy foreign-block => new-foreign-block

Arguments

foreign-block A foreign block pointer.

Values

new-foreign-block A foreign block pointer.

Description

The function f or ei gn- bl ock- copy makes and returns a copy of the foreign block foreign-block. It correspondsto the C
function Bl ock_copy.

foreign-block can be any foreign block.

The result of the copy is another foreign block with an indefinite scope, which has the same attributes as foreign-block. In
other words, invoking the copy invokes the same function.

The new foreign block cannot be garbage collected. It should be freed when you are finished with it by
forei gn-bl ock-rel ease.

f or ei gn- bl ock- copy is not expected to be commonly useful. You need it when you get passed a block and you want to
use it outside the scope of the call in which it was passed, unlessit is documented that the block is global.

Notes

1. If you use new-foreign-block with a function that is documented to release the block, you must not call
f or ei gn- bl ock-r el ease onit. However, we do not expect this situation to happen, because a proper interface will
only free blocksthat it allocates.

2. for ei gn- bl ock- copy isimplemented in LispWorks for Macintosh only.

See also

forei gn-bl ock-rel ease
5.7 Block objectsin C (foreign blocks)

102

7 Function, Macro and Variable Reference

foreign-block-release Function

Summary

Releases aforeign block, like Bl ock_r el ease, in LispWorks for Macintosh.

Package

fli

Signature

f orei gn- bl ock-rel ease foreign-block

Arguments

foreign-block A foreign block pointer.

Description
The function f or ei gn- bl ock-r el ease releases aforeign block. It correspondsto the C function _Bl ock_r el ease.

foreign-block must be the result of f or ei gn- bl ock- copy. Inparticular, itisan error to cal f or ei gn- bl ock-r el ease on
theresult of al | ocat e- f or ei gn- bl ock.

Notes

1. In principle, you can also usef or ei gn- bl ock-r el ease on foreign blocks that you received from foreign code, if the
interface says that you need to release them. However, we do not expect this to happen, because proper interface will
always free blocks that it allocates or copies.

2. After thecall tof or ei gn- bl ock-r el ease, foreign-block is of typer el eased- f or ei gn- bl ock- poi nter.

3. for ei gn- bl ock-r el ease has no useful return value.
4. f or ei gn- bl ock- r el ease isimplemented in LispWorks for Macintosh only.

5. To free aforeign block that was allocated by Lisp, usef r ee- f or ei gn- bl ock.

See also

f or ei gn- bl ock- copy
free-foreign-bl ock
r el eased-f orei gn- bl ock- poi nter
5.7 Block objectsin C (foreign blocks)

103

7 Function, Macro and Variable Reference

foreign-function-pointer Function

Summary

Returns a FLI pointer with its address set to the address of aforeign symbal.

Package

fli

Signature

forei gn-function-pointer symbol-name => pointer

Arguments

symbol-namel] A string or a symbol.
Values

pointer A FLI pointer.
Description

Thefunction f or ei gn-f uncti on- poi nt er returnsaFLI pointer with its address set to the address of aforeign symbol,
which can be either a symbol defined in aforeign library or aforeign callable.

symbol-name needs to be a name of aforeign symbol specifying aforeign function, either a string naming a symbol defined
in aforeign library, or a symbol naming aforeign callable (defined by def i ne-f or ei gn-cal | abl e).

f orei gn-function- poi nt er returnsaFLI pointer with its address set to the address of the symboal. If the symbol is not
defined yet an error is signaled.

The pointer that isreturned is associated with the symbol and is returned in further callsto f or ei gn- f unct i on- poi nt er
with the same argument. The pointer must not be modified by functionslikei ncf - poi nt er .

When a saved image is restarted all the pointers that have been returned by f or ei gn- f unct i on- poi nt er are updated to
reflect the current address of their symbol (which may be different in the new invocation).
Notes

1. The pointer is not updated if the module containing the symbol is disconnected and registered again.

2. Only the pointer itself is updated, but not any copies of it. f or ei gn-f uncti on- poi nt er isvery similar to calling
make- poi nt er with symbol-name, with the following differences:

» Theresult of f or ei gn-f uncti on- poi nt er isupdated on image restart.

e foreign-function-pointer returnsthe same pointer for the same symbol-name each time, so modifying the
pointer will break it.

e foreign-function-pointer alocatesonly inthefirst cal for each symbol. In contrast, rake- poi nt er
alocates a pointer in each call.

104

7 Function, Macro and Variable Reference

e foreign-function-pointer keepsthe pointer, so if you want to useit only once, make- poi nt er is better.

3. foreign-function-pointer isespecialy useful for creating pointers for passing the address of foreign callablesto

foreign code in situations where the same address is used repeatedly.

See also

define-foreign-callable
nmeke- poi nt er
3.1.1 Creating pointers

foreign-slot-names

Summary

Returns alist of the slot namesin aforeign structure.

Package

fli

Signature

forei gn-sl ot - nanes object => dlot-names

Arguments

objectl] A foreign object or a pointer to aforeign object.
Values

slot-names A list containing the slot names of object.
Description

Function

The function f or ei gn- sl ot - narmes returns alist containing the slot names of object, whose foreign type was defined by
define-c-struct. If objectisnot astructure, an error is signaled.

Examples

In the following example a structure with three slots is defined, an instance of the structure is made, and

f or ei gn- sl ot - nanes isused to return alist of the slot names.

(fli:define-c-struct POS
(x :int)
(y :int)
(z :int))

(setqg ny-pos (fli:allocate-foreign-object

(fli:foreign-slot-nanes ny-pos)

:type ' POS))

105

7 Function, Macro and Variable Reference

See also

2.2.3 Structures and unions

defi ne-c-struct

forei gn-sl ot-val ue

foreign-slot-offset Function

Summary

Returns the offset of aslot ina FLI object.

Package

fli

Signature

forei gn-slot-of fset object-or-type dot-name => offset

Arguments

object-or-typeld

slot-namel]

Values

offset

Description

A foreign object, a pointer to aforeign object, or aforeign structure or union type.

A symbol or alist of symbolsidentifying the ot to be accessed, as described for
forei gn-sl ot -val ue.

The offset, in bytes, of the dlot slot-name in the FLI object object.

Thefunction f or ei gn- sl ot - of f set returnsthe offset, in bytes, of the slot slot-name in object-or-type. The offset isthe
number of bytes from the beginning of the object to the start of the slot. For example, the offset of the first slot in any FLI

object isO.

Examples

The following example defines a structure, creates an instance of the structure pointed to by di r , and then finds the offset of
the third dlot in the object.

(fli:define-c-struct conpass

(east :int)

(west (:c-array :char 20))

(north :int)
(south :int))

(fli:foreign-slot-offset 'conpass 'north)

(setqg dir (fli:allocate-foreign-object :type 'conpass))

(fli:foreign-slot-offset dir 'north)

106

7 Function, Macro and Variable Reference

See also

forei gn-sl ot-val ue
foreign-slot-pointer
si ze- of

foreign-slot-pointer Function

Summary

Returns a pointer to a specified slot of an object.

Package

fli

Signature

forei gn-sl ot-poi nter object dot-name &key type object-type => pointer

Arguments

object(] A foreign abject, or a pointer to aforeign object.

slot-namel] A symbol or alist of symbols identifying the slot to be accessed, as described for
forei gn-sl ot -val ue.

typel] A foreign type.

object-typel] The FLI structure type that contains slot-name.

Values

pointer A pointer to the dot identified by slot-name.

Description

The function f or ei gn- sl ot - poi nt er returns aforeign pointer to the slot slot-name in object.

If typeissupplied, thenf or ei gn- sl ot - poi nt er assumes that the slot contains an object of that type, overriding the type
in the structure definition.

If object-typeis supplied then f or ei gn- sl ot - poi nt er assumes that object is of the that type and the compiler might be
able to optimize the access to the slot. If object-type is not supplied, then the object type is determined dynamically from
object.

Examples

In the following example a structure type called conpass isdefined. Aninstance of the structureis allocated using
al | ocat e-f or ei gn- obj ect, pointed to by poi nt 1. Thenf or ei gn- sl ot - poi nt er isused to get a pointer, called
poi nt 2, to the second dot of the foreign object.

(fli:define-c-struct conpass
(west :int)
(east :int))

107

7 Function, Macro and Variable Reference

(setqg pointl (fli:allocate-foreign-object :type
' conpass))

(setq point2 (fli:foreign-slot-pointer pointl 'east
ctype :int))

The: t ype keyword can be used to return the value stored in the slot as a different type, providing the typeis compatible. In
the next example, poi nt 3 is set to be a pointer to the same address as poi nt 2, but it expects the value stored thereto be a
boolean.

(setq point3 (fli:foreign-slot-pointer pointl 'east
:type '(:boolean :int)))

Using der ef er ence the value can be set as an integer using poi nt 2 and read as a boolean using poi nt 3.

(setf (fli:dereference point2) 0)
(fli:dereference point3)
(setf (fli:dereference point2) 1)

(fli:dereference point3)

See also

2.2.3 Structuresand unions
decf - poi nter

i ncf-pointer

nmake- poi nt er

forei gn-sl ot-val ue
foreign-slot-offset

foreign-slot-type Function

Summary

Returns the type of a specified dot of aforeign object.

Package

fli

Signature

foreign-slot-type object-or-type sot-name => type

Arguments
object-or-typel] A foreign object, a pointer to aforeign object, or aforeign structure or union type.
dot-namel] A symbol or alist of symbolsidentifying the slot whose typeisto be returned. The value

isinterpreted as described for f or ei gn- sl ot - val ue.

108

7 Function, Macro and Variable Reference

Values

type

The type of dot-name.

Description

Thefunction f or ei gn- sl ot - t ype returns the type of the slot dot-name in object-or-type.

Examples

In the following example two new types, east andwest are defined. Then anew structure, conpass, is defined, with two
slots. Aninstance of the structureis created, and f or ei gn- sl ot - t ype is used to get the type of thefirst dot of the
structure.

(fli:define-c-typedef east (:boolean :int))
(fli:define-c-typedef west :long)

(fli:define-c-struct conpass
(x east)

(y west))
(fli:foreign-slot-type 'conpass 'Xx)
(setqg dir (fli:allocate-foreign-object :type 'conpass))

(fli:foreign-slot-type dir 'x)

See also

2.2.3 Structures and unions

forei gn-sl ot -nanes

forei gn-sl ot-val ue

foreign-slot-value

Summary

Returns the value of adlot in aforeign object.

Package

fli

Signature

forei gn-sl ot-val ue object slot-name &key type object-type copy-foreign-object => value

setf (foreign-slot-value object sot-name &key type object-type copy-foreign-object) value => value

Arguments
object] Either an instance of or a pointer to aFLI structure.
sot-name] A symbol or alist of symbolsidentifying the slot to be accessed.

109

Accessor

7 Function, Macro and Variable Reference

typel] A foreign type.

object-typel] The FLI structure type that contains dot-name. If thisis passed, the compiler might be
able to optimize the access to the slot. If thisis omitted, the object type is determined
dynamically from object.

copy-foreign-objectt] Oneoft, nil or:error.

value The value of the slot dot-namein the FLI object object is returned.
Values

value The value of the slot dot-namein the FLI object object is returned.
Description

The accessor f or ei gn- sl ot - val ue accesses and returns the value of aslot in a specified object. An error issignaled if the
dlot isan aggregate type and copy-foreign-object isnot supplied ast or ni | . Usef or ei gn- sl ot - poi nt er to access such
aggregate dots.

If dot-nameisasymbol then it names the dot of object to be accessed. If dot-nameisalist of symbols, then these symbols
name slotsin nested structures starting with the outermost structure object, asin thei nner /i ddl e/out er example below.

If typeissupplied, thenf or ei gn- sl ot - val ue assumes that the slot contains an object of that type, overriding thetypein
the structure definition.

copy-foreign-object is only used when the type of the slot (or typeif supplied) is an aggregate type, because objects of these
types cannot be converted to aLisp value. If copy-foreign-objectist , f or ei gn- sl ot - val ue makes a copy of the aggregate
object in the slot and returns the copy. If copy-foreign-objectisni |, f or ei gn- sl ot - val ue returns the aggregate object
directly. If copy-foreign-object is: err or (the default) then f or ei gn- sl ot - val ue signals an error.

If object-type is supplied then f or ei gn- sl ot - val ue assumes that object is of the that type and the compiler might be able
to optimize the access to the slot. If object-type is not supplied, then the object type is determined dynamically from object.

Theset f formof f or ei gn- sl ot - val ue can be used to set the value of adot in astructure, as shown in the example
below.

Compatibility note

64-bit integer typessuch as(:1ong :1ong), :int 64 and: ui nt 64 are now supported for typeinf or ei gn- sl ot - val ue
in 32-bit LispWorks. In 32-bit LispWorks 6.1 and earlier versions, these types could only be used by
define-foreign-function.

Examples

In the following example aforeign structure is defined, an instance of the structure is made with ny - pos pointing to the
instance, and f or ei gn- sl ot - val ue isused to set they slot of the object to 10.

(fli:define-c-struct PGS
(x :int)
(y :int)
(z :int))
(setqg ny-pos (fli:allocate-foreign-object :type 'POS))

(setf (fli:foreign-slot-value nmy-pos 'y) 10)

The next forms both return the value of they dot at ny- pos, whichis 10.

110

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 Function, Macro and Variable Reference

(fli:foreign-slot-value ny-pos 'y)

(fli:foreign-slot-value ny-pos 'y :object-type 'pos)

See the section 9.7 Optimizing your code in the LispWorks® User Guide and Reference Manual for an example showing how
toinline foreign slot access.

This example accesses a slot in nested structures:

(fli:define-c-struct inner
(vl :int)
(v2 :int))

(fli:define-c-struct niddle
(i1 (:struct inner))
(i2 (:struct inner)))

(fli:define-c-struct outer
(mL (:struct niddle))
(m2 (:struct mddle)))

(fli:with-dynanic-foreign-objects
((obj (:struct outer)))
(setf (fli:foreign-slot-value obj '(ml i2 vl1)) 99))

See also

2.2.3 Structures and unions
forei gn-slot-pointer
forei gn-slot-offset
deref erence
with-foreign-slots

foreign-symbol-defined-p Function

Summary

Determines whether aforeign symbol is defined.

Package

fli

Signature

f orei gn-synbol - defi ned- p symbol-name &key functionp module encoding => boolean

Arguments

symbol-namel] A string or asymbol.

functionpO A boolean.

modulel] A symbol or string naming amodule, or ni | .
encoding Oneof : source, : obj ect,:lispor:dbcs

111

7 Function, Macro and Variable Reference

Values

boolean nil ort.

Description

The function f or ei gn- synbol - def i ned- p returnst if symbol-name is aknown foreign symbol and ni | otherwise.

functionp, module and encoding are used as for make- poi nt er .

Examples

(foreign-synbol -defined-p "printf") =>t

See also

nmake- poi nt er

foreign-typed-aref
Summary

Accesses aforeign array and can be compiled to efficient code.

Package

fli

Signature
foreign-typed-aref type array index => value

setf (foreign-typed-aref type array index) value => value

Arguments

typel] A type specifier.

arrayl] A foreign pointer.

index A non-negativei nt eger .
value An element of array.
Values

value An element of array.
Description

Accessor

The accessor f or ei gn-t yped- ar ef accessesaforeign array and is compiled to efficient code when compiled at safety 0. It

correspondsto sys: t yped- ar ef which accesses Lisp vectors.

type must evaluate to a supported element type for foreign arrays. 1n 32-bit LispWorks these types are doubl e-f | oat ,

singl e-fl oat, (unsi gned-byte 32), (signed-byte 32), (unsi gned-byte 16), (si gned-byte 16),

112

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm

7 Function, Macro and Variable Reference

(unsi gned-byte 8), (signed-byte 8) andsys:int32. In64-bit LispWorks type can also be
(unsi gned- byte 64), (signed-byte 64) andsys: i nt 64.

array isaforeign pointer to aFLI array. Memory can be allocated with:

(fli:allocate-foreign-object
:type :double
: nel ens
(ceiling byte-size
(fli:size-of :double)))

to get sufficient alignment for any call to f or ei gn-t yped- ar ef .

In the case the memory is alocated by the operating system the best approach isto reference it from Lisp by a pointer type, to
avoid making a: c- ar r ay foreign type dynamically.

index should be avalid byte index for array. If index is declared to be of typef i xnumthen the compiler will optimize it
dightly better. Some parts of the FLI (for example, al | ocat e- f or ei gn- obj ect) assumef i xnumsizesso it is best to use
fixnums only.

Notes

Efficient accessto a Lisp vector object isaso available. Seesys: t yped- ar ef inthe LispWorks® User Guide and
Reference Manual.

See also

2FLI Types
forei gn-aref

foreign-type-equal-p Function

Summary

Determines whether two foreign types are the same underlying foreign type.

Package

fli

Signature

forei gn-type-equal -p typel type2 => result

Arguments

typell A foreign type.
type2[] A foreign type.
Values

result A boolean.

113

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

7 Function, Macro and Variable Reference

Description

Thefunction f or ei gn-t ype- equal - p returnstrueif typel and type2 are the same underlying foreign type, and false
otherwise.

Examples

(fli:define-foreign-type aa () '(:signed :byte))
=
aa

(fli:define-foreign-type bb () '(:signed :char))
=
bb

(fli:foreign-type-equal-p 'aa 'bb)
=
t

(fli:foreign-type-equal -p 'bb :char)
=
nil

See also

2FLI Types
define-foreign-type

foreign-type-error Condition Class

Summary

The class of errors signaled when an object does not match aforeign type.

Package

fli

Superclasses

type-error

Description

The condition classf or ei gn-t ype- error isused for errors signaled when an object does not match aforeign type.
free-foreign-block Function

Summary

Frees aforeign block that was allocated by Lisp, in LispWorks for Macintosh.

114

http://www.lispworks.com/documentation/HyperSpec/Body/e_tp_err.htm

7 Function, Macro and Variable Reference

Package

fli

Signature

free-foreign-bl ock foreign-block

Arguments

foreign-block A Lisp-alocated f or ei gn- bl ock- poi nter.

Description
Thefunction f r ee- f or ei gn- bl ock freesaforeign block that was allocated by Lisp.

foreign-block must be aresult of acall toal | ocat e- f or ei gn- bl ock. Itisan error to call f r ee- f or ei gn- bl ock on the
result of f or ei gn- bl ock- copy or on aforeign block coming from foreign code.

Note that the function that was passed to al | ocat e- f or ei gn- bl ock may still beinvoked after f r ee- f or ei gn- bl ock,
because the block may have been copied. See the discussion in 5.7.3 Scope of invocation.

Itisan error tocal f r ee- f or ei gn- bl ock more than once on the same foreign-block.

free-f orei gn- bl ock has no useful return value.

Notes

1. Tofreeaforeign block that was allocated by foreign code, usef or ei gn- bl ock-r el ease.

2. free-foreign-bl ock isimplemented in LispWorks for Macintosh only.

See also

al | ocat e-forei gn-bl ock
wi t h-f or ei gn- bl ock
5.7 Block objectsin C (foreign blocks)

free-foreign-object
free Functions

Summary

Deallocates the space in memory pointed to by a pointer.

Package

fli

Signatures
free-forei gn-object pointer => null-pointer

free pointer => null-pointer

115

7 Function, Macro and Variable Reference

Arguments

pointer 0] A pointer to the object to de-allocate.
Values

null-pointer A pointer with address zero.
Description

Thefree-forei gn-obj ect function deallocates the space in memory pointed to by pointer, which frees the memory for
other uses. The address of pointer isthe start of ablock of memory previously allocated by al | ocat e- f or ei gn- obj ect .

If pointer isanull pointer then f r ee- f or ei gn- obj ect takesno action.

Thefunction f r ee isasynonym for f r ee- f or ei gn- obj ect.

Examples

In the following example a boolean type is defined and an instance is created with memory allocated using
al | ocat e-f or ei gn- obj ect. Thefunctionf r ee-f or ei gn- obj ect isthen used to free up the memory used by the
boolean.

(fli:define-c-typedef BOOL (:boolean :int))
(setq point (fli:allocate-foreign-object :type 'BOOL))

(fli:free-foreign-object point)

See also

al | ocat e-f orei gn-obj ect
1.4 An example of dynamic memory allocation
3.1.3 Allocation of FL1 memory

get-embedded-module Function

Summary

Gets aforeign module from afile and sets up an embedded dynamic module.

Package

fli

Signature

get - enbedded- nodul e name filename

Arguments
namel] A symbol.
filenamel] A pathname specifier for afile containing a dynamic foreign module.

116

7 Function, Macro and Variable Reference

Description

The function get - enbedded- nodul e gets the foreign module in filename and sets up an embedded dynamic module named
name.

Notes

1. get - enbedded- nodul e iscaled at load time and has no effect except to set up the embedded module. To actually use
the code in the module, you need to call i nst al | - enbedded- nodul e at run time.

2. The effect of get - enbedded- nodul e persists after save- i mage and del i ver.

3. The module should not have dependencies on other non-standard modules, otherwisei nst al | - enbedded- nodul e
may fail to install it.

4. To incorporate an embedded module into afad file (that is, to load it at compile time) you need to use both
get - enbedded- nodul e- dat a (at compiletime) and set up- enbedded- nodul e (at load time), instead of
get - enbedded- nodul e.

5. get - enbedded- nodul e does not return a useful value.

See also

i nstall-enbedded- nodul e

get - enbedded- nodul e- dat a

set up- enbedded- nodul e

5.6 Incorporating a foreign moduleinto a LispWorksimage

get-embedded-module-data Function

Summary

Returns aforeign module as a Lisp object suitable for use at run time, possibly viaafad file.

Package

fli

Signature

get - enbedded- nodul e- dat a filename => data

Arguments

filenamel] A pathname specifier for afile containing a dynamic foreign module.
Values

data A Lisp object containing the data of the foreign module.
Description

The function get - enbedded- nodul e- dat a returns the foreign module in filename as a Lisp object suitable as argument to
set up- enbedded- nodul e, but also externalizable, that isthe compiler can put it in afad file.

117

7 Function, Macro and Variable Reference

Notes

1. get - enbedded- nodul e- dat a is useful when you need to incorporate aforeign dynamic modulein afadl file, whichis
itself useful when the fad isloaded on the run time computer. In the usua situation when the fad isloaded on the same
computer whereit is compiled, get - enbedded- nodul e is more convenient, and replaces both
get - enbedded- nodul e- dat a and set up- enbedded- nodul e.

2. To incorporate the module in afad file, get - enbedded- nodul e- dat a must be called at compile time, which is
typically done either by doing it at read time with #. or using amacro. The result is then used as argument to
set up- enbedded- nodul e at load time. Examples of both approaches are shown below.

3. To actualy usethe code in the module, i nst al | - enbedded- nodul e must be called at run time with the name of the
module (my- enbedded- modul e- nane in the examples below).

4. The module should not have dependencies on other non-standard modules, otherwisei nst al | - enbedded- nodul e
may fail to install it.

Examples

Calling get - enbedded- nodul e- dat a at read time with #. :

(set up- enmbedded- modul e ' ny- enbedded- nodul e- nane
#. (get - enbedded- nodul e- dat a
(rmy-1 ocate-the-foreign-nodul e)))

Cdling get - enbedded- nodul e- dat a viaamacro. Note that there is no backquote or quote, so the code is executed by by
the compiler:

ef macro ny- get - enbedded- nodul e-dat a
def nbedded- nodul e-d
(let ((pathnane (ny-locate-the-foreign-nodule)))
(get - enbedded- nodul e- dat a pat hnane))

(set up- embedded- nodul e ' ny- enbedded- nodul e- nane
(ny- get - enbedded- nodul e-dat a))

See also

i nstall-enbedded- nodul e

get - enbedded- nodul e

set up- enbedded- nodul e

5.6 Incorporating a foreign moduleinto a LispWorksimage

incf-pointer Function

Summary

Increases the address held by a pointer.

Package

fli

Signature

i ncf-pointer pointer &ptional deta => pointer

118

7 Function, Macro and Variable Reference

Arguments

pointer 0] A FLI pointer.

deltald Aninteger. The default valueis 1.
Values

pointer The pointer passed.

Description

The function i ncf - poi nt er increases the address held by pointer. If deltais not given the address isincreased by the size
of the type pointed to by pointer. The address can be increased by a multiple of the size of the type by specifying adelta. If
the size of the typeis 0 then an error is signalled.

Thefunctioni ncf - poi nt er isoften used to move a pointer through an array of values.

Examples

In the following example an array with 10 entriesis defined. A copy of the pointer to the array is made, and is incremented
and decremented.

(setqg array-obj
(fli:allocate-foreign-object :type :int
:nelems 10
sinitial-contents '(0 1234567 829)))

(setqg pointl (fli:copy-pointer array-obj))
(dotimes (x 9)
(print (fli:dereference pointl))
(fli:incf-pointer pointl))
(dotimes (x 9)

(fli:decf-pointer pointl)
(print (fli:dereference pointl)))

See also

decf - poi nter
3.4 An example of dynamic pointer allocation

install-embedded-module Function

Summary

Installs an embedded dynamic module.

Package

fli

119

7 Function, Macro and Variable Reference

Signature

i nstal |l - enbedded- nodul e name &ey delay-delete

Arguments
namel] A SymbOl .
delay-deletel] A boolean.
Description

Thefunctioni nst al | - enbedded- nodul e installs the embedded dynamic module name.

name must be a name of an embedded dynamic module that was set up either by get - enbedded- nodul e or
set up- enbedded- nodul e.

i nst al | - enbedded- nodul e instals the module, which means making its code availableto be used in Lisp, asif
r egi st er - nodul e was called with the original module.

The module is written to atemporary file that is deleted by LispWorks.
Note: You should consult LispWorks Support before using del ay-del ete.

delay-delete controls the time of deletion of the temporary file that is created by i nst al | - enbedded- nodul e. It defaultsto
thevalue of *i nst al | - enbedded- nodul e- del ay- del et e*, which defaultsto ni | . If delay-deleteisni | , the
temporary file is deleted during the call to i nst al | - enbedded- nodul e. If delay-deleteis non-nil, thefile is deleted only
when LispWorks exists. On Windows it always behave asif delay-delete is non-nil.

Deleting the file immediately is better in most cases, because it means that the file is not left in the filesystem if LispWorks
does not exit cleanly (for exampleif POSIX ki | | isused). However, some debugging code may try to find the temporary
file, in which case you can delay the deletion.
Notes

1. install-enbedded- nodul e must be called at run time, normally during the initialization of the application.

2. The effect of i nst al | - enbedded- nodul e does not persist after save-i mage or del i ver.

3.install-enbedded- nodul e can be called repeatedly with the same name. The subsequent callsin the same
invocation of the application do not have any effect.

4. install-enbedded- nodul e does not return a useful value.

See also

get - enbedded- nodul e

get - enbedded- nodul e- dat a

set up- enbedded- nodul e

i nstal |l - enbedded- nodul e- del ay- del et e

5.6 Incorporating a foreign moduleinto a LispWorksimage

120

7 Function, Macro and Variable Reference

install-embedded-module-delay-delete Variable

Summary

Default for the keyword delay-deleteini nst al | - enbedded- nodul e.

Package

fli
Initial Value
nil
Description

Thevariable*i nst al | - enbedded- nodul e- del ay- del et e* isused as the default value for the keyword delay-delete in
i nstal | - enbedded- nodul e. Seei nst al | - enbedded- nodul e for more details.

See also

i nstall - enbedded- nodul e

locale-external-formats Variable

Summary

Obsol ete.

Package

fli

Initial Value

Not specified.

Description

Thevariable*| ocal e- ext er nal - f or mat s* isnot used. Prior to LispWorks 8.0, it was used by set - | ocal e on non-
Windows platforms.

make-integer-from-bytes Function

Summary

Converts foreign bytes back to a Lisp integer.

121

7 Function, Macro and Variable Reference

Package

fli

Signature

make- i nt eger-from bytes pointer length => integer

Arguments

pointer [A foreign pointer.
lengthd An integer.
Values

integer [An integer.
Description

The function make- i nt eger - f r om byt es converts length bytes starting at pointer into the Lisp integer integer. The bytes
and length must have been generated by wi t h-i nt eger - byt es or convert-i nt eger-to-dynani c-f orei gn- obj ect .

See also

5.3 Lispintegers
wi t h-integer-bytes
convert-integer-to-dynani c-foreign-object

make-pointer Function

Summary

Creates a pointer to a specified address.

Package

fli

Signature

make- poi nt er &key address type pointer-type symbol-name functionp module encoding => pointer

Arguments

address]] The address pointed to by the pointer to be created.

typel] The type of the object pointed to by the pointer to be created.
pointer-typel] The type of the pointer to be made.

symbol-name] A string or a symbol.

functionpO A boolean.

modulel A symbol or string naming amodule, or ni | .

122

7 Function, Macro and Variable Reference

encoding] Oneof : source, : object,:lispor:dbcs.
Values

pointer] A pointer to address.

Description

The function make- poi nt er creates apointer of a specified type pointing to a given address address, or optionaly to a
function or foreign callable.

symbol-name is either a string containing the name of aforeign symbol defined inaDLL, or astring or symbol naming a
foreign callable defined by def i ne-f or ei gn-cal | abl e.

Either address or symbol-name must be supplied, otherwise nake- poi nt er signals an error.

Note that in many cases, especially when : synbol - nane isused with a symbol defined by def i ne- f or ei gn- cal | abl e,
f or ei gn-f uncti on- poi nt er would be better than using make- poi nt er with: synbol - nane.

If typeissupplied, thenit is used asthe FLI type that pointer pointsto. Alternatively, if pointer-typeis supplied, then it must
be aFLI pointer type and it is used as the pointer type of pointer. An error issignalled if both type and pointer-type are
supplied.

If type or pointer-type are not supplied, then functionp can be used. If functionp ist , then pointer is a pointer to type
: functi on. Thisisthe default value. If functionpisni |, then pointer isa pointer to type: voi d.

encoding controls how symbol-name is processed. The values are interpreted like the encode argument of
defi ne-forei gn-cal | abl e. The default value of encodingis: sour ce if symbol-nameisastringand: | i sp if symbol-
nameisasymbol.

In the case of a pointer to aforeign callable or foreign function, module can be supplied to ensure that the pointer points to
the function in the correct DLL if there are other DL L s containing functions with the same name. module is processed as by
defi ne-foreign-function.

Examples

In the following example amodule is defined, and the variable set poi nt isset equal to a pointer to afunction in the
module.

(fli:register-nodul e :user-dll :file-name "user32")

(setqg setpoint
(fli:nmake-pointer :synbol-nane "SetCursorPos"
:nodul e :user-dll)

See also

3FLI Pointers

4.1 Foreign callables and foreign functions
copy- poi nter
define-foreign-callable
foreign-function-pointer

forei gn-synbol -defi ned-p

regi ster-nodul e

Wi t h- coer ced- poi nter

123

7 Function, Macro and Variable Reference

module-unresolved-symbols Function

Summary

Returns foreign symbol names that cannot be resolved.

Package

fli

Signature

nmodul e- unr esol ved- synbol s & ey module => list

Arguments

modulel] nil,:all,orastring. Thedefaultis: all .
Values

listO A list of strings.

Description

The function nodul e- unr esol ved- synbol s returnsalist of foreign symbol names, each of which cannot be resolved in
the currently known modules.

If moduleisni |, then list includes only those names not associated with a module.
If moduleis: al | , then list includes the unresolved names in all modules and those not associated with a module.

If moduleisastring, then it names a module and list contains only the unresolved symbols associated with that module.

See also

5.5.1.1 Testing whether a function is defined
regi ster-nodul e

null-pointer Variable
Summary

A null pointer.

Package

fli

Initial Value

Theresult of calling (nmake- poi nter :address 0 :type :void).

124

7 Function, Macro and Variable Reference

Description

Thevariable*nul | - poi nt er* containsa(: poi nter :voi d) with addressO.

This provides asimple way to pass a null pointer when needed.

Examples

(fli:pointer-address fli:*null-pointer*)

=>

0

(fli:null-pointer-p fli:*null-pointer*)

=>
T

See also

poi nt er - addr ess
nul | - pointer-p

. poi nter

null-pointer-p

Summary

Tests apointer to seeif it isanull pointer.

Package

fli

Signature

nul | - poi nter-p pointer => result

Arguments

poi nterd] A FLI pOl nter.
Values

resultd] A boolean.
Description

Function

Thefunction nul | - poi nt er - p isused to determineif a pointer isanull pointer. A null pointer is apointer pointing to

address 0.

If pointer isanull pointer (that is, a pointer pointing to address 0) then result is true, otherwise nul | - poi nt er - p returns

false.

7 Function, Macro and Variable Reference

Examples

In the following example a pointer to an : i nt isdefined, and tested with nul | - poi nt er - p. The pointer is then freed,
becoming a null pointer, and is once again tested using nul | - poi nt er - p.

(setqg point (fli:allocate-foreign-object :type :int))
(fli:null-pointer-p point)
(fli:free-forei gn-object point)

(fli:null-pointer-p point)

See also

3.2 Pointer testing functions

5.5.1.1 Testing whether a function is defined
nul | - pointer

poi nt er - addr ess

poi nter-eq

pointer-address Function

Summary

Returns the address of a pointer.

Package

fli

Signature

poi nt er - addr ess pointer => address

Arguments

poi nter A FLI pOl nter.
Values

address A non-negative integer.
Description

The function poi nt er - addr ess returns the address of pointer as an integer.
Examples
In the following example a pointer is defined, and its addressis returned using poi nt er - addr ess.

(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-address point)

126

7 Function, Macro and Variable Reference

See also

3.2 Pointer testing functions
nul | -pointer-p
poi nt er - eq

pointer-element-size Function

Summary

Returns the size in bytes of aforeign object or aforeign type.

Package

fli

Signature

poi nt er- el enent - si ze pointer-or-type => size

Arguments

pointer-or-typel] A FLI pointer to aforeign object or the name of a FL| pointer type.
Values

size[] A non-negative integer.

Description

The function poi nt er - el ement - si ze returnsthe size, in bytes, of the object or type specified.
If pointer-or-typeisan FLI pointer, sizeisthe size, in bytes, of the object pointed to by pointer-or-type.

If pointer-or-type isthe name of aFLI pointer type, sizeisthe size, in bytes, of the elements of that type.

Examples

In the following example a pointer to an integer is created. Then the sizein bytes of the integer is returned using
poi nter-el ement - si ze.

(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-elemnment-size point)

See also

3.2 Pointer testing functions
poi nter-el enent -type
si ze- of

127

7 Function, Macro and Variable Reference

pointer-element-type Function

Summary

Returns the type of the foreign object pointed to by a FLI pointer.

Package

fli

Signature

poi nter-el enent -t ype pointer-or-type => type

Arguments

pointer-or-typel] A FLI pointer to aforeign object or the name of aFLI| pointer type.
Values

typel] The name of aFLI pointer type.

Description

The function poi nt er - el ement - t ype returns the type of the foreign object specified, or the element type of the foreign
type specified.

If pointer-or-typeisaFLI pointer, typeisthe type of the foreign object pointed to by pointer-or-type.

If pointer-or-type isthe name of aFLI pointer type, type is the type of the elements of that FLI pointer type.

Examples

In the following example a pointer to an integer is defined, and poi nt er - el enent - t ype is used to confirm that the pointer
points to an integer.

(setq point (fli:allocate-foreign-object :type :int))

(fli:pointer-elenment-type point)

In the next example a new type, happy, isdefined. The pointer poi nt is set to point to an instance of happy, and
poi nt er - el enent - t ype isused to find the type of the object pointed to by poi nt .

(fli:define-c-typedef happy :1ong)
(setqg point (fli:allocate-foreign-object :type 'happy))

(fli:pointer-elenment-type point)

See also

3.2 Pointer testing functions
forei gn-slot-type

128

7 Function, Macro and Variable Reference

poi nter-el enent -si ze
poi nter-el enent-type-p

pointer-element-type-p

Summary

Tests whether a FL1 pointer matches a given element type.

Package

fli

Signature

poi nter-el ement -type-p pointer type => result

Arguments

pointer (] A FLI pointer to aforeign object.
typel] A foreign type.

Values

result A boolean.

Description

Function

The function poi nt er - el enent - t ype- p returnstrue if the element type of the foreign object pointed to by pointer has the

same underlying type as type.

Examples

(setqg point (fli:allocate-foreign-object :type :int))

=
=> #<Pointer to type :INT = #x007F3970>

(fli:pointer-element-type-p point :signed)

->
t

See also

3.2 Pointer testing functions
poi nter-el enent-type

129

7 Function, Macro and Variable Reference

pointer-eq Function

Summary

Test whether two pointers point to the same memory address.

Package

fli

Signature

poi nt er-eq pointerl pointer2 => boolean

Arguments

pointer 10] A FLI pointer.
pointer20] A FLI pointer.
Values

boolean A boolean.
Description

The function poi nt er - eq tests whether pointer 1 points to the same address as pointer2 and returnst if they do, and ni | if
they do not.
Examples

In the following example a pointer, poi nt 1, isdefined, and poi nt 2 is set equal to it. Both are then tested to seeiif they are
equal to each other using poi nt er - eq. Then poi nt 2 isdefined to point to a different object, and the two pointers are tested
for equality again.

(setqg pointl (fli:allocate-foreign-object :type :int))
(setqg point2 pointl)

(fli:pointer-eq pointl point2)

(setqg point2 (fli:allocate-foreign-object :type :int))

(fli:pointer-eq pointl point?2)

See also

3.2 Pointer testing functions
nul | -pointer-p
poi nterp

130

7 Function, Macro and Variable Reference

pointerp Function

Summary

Tests whether an object is a pointer or not.

Package

fli

Signature

poi nterp pointer => result

Arguments

pointer An object that may be aFLI pointer.
Values

resultd] A boolean.

Description

The function poi nt er p tests whether the argument pointer is a pointer.

resultist if pointer isapointer, otherwiseni | isreturned.

Examples

In the following example a pointer, poi nt , is defined, and an object which is not a pointer is defined. Both are tested using
poi nt er p.

(setq point (fli:allocate-foreign-object :type :int))
(setq not-point 7)
(fli:pointerp point)

(fli:pointerp not-point)

See also

3.2 Pointer testing functions
nul | -pointer-p

poi nt er - addr ess

poi nt er - eq

131

7 Function, Macro and Variable Reference

pointer-pointer-type

Summary

Returns the pointer type of a FLI pointer.

Package

fli

Signature

poi nt er - poi nter-type pointer => pointer-type

Arguments

pointer A FLI pointer.

Values

pointer-type The pointer type of pointer.
Description

The function poi nt er - poi nt er - t ype returns the pointer type of the foreign pointer pointer.

Examples

(setq point (fli:allocate-foreign-object
=>
#<Pointer to type :INT = #x007F3DFO>

(fli:pointer-pointer-type point)
=>
(: PO NTER : | NT)

(fli:free-foreign-object point)
=>
#<Pointer to type :INT = #x00000000>

See also

3.3 Pointer dereferencing and coercing
nmake- poi nt er

print-collected-template-info

Summary

Prints the FLI Template information in the image.

:type :int))

Function

Function

7 Function, Macro and Variable Reference

Package

fli

Signature

print-collected-tenpl ate-info &key output-stream => ni |

Arguments

output-stream(] An output stream designator. The defaultisni |, meaning standard output.

Description

The FLI converters require pieces of compiled code known as FLI templates, and sometimes your delivered application will
need extra templates not included in LispWorks as shipped.

Thefunctionpri nt - col | ect ed-t enpl at e- i nf o printsthe information about FL| templates that has been collected.
These must be compiled and loaded into your application. The output is printed to output-stream.

See the Delivery User Guide for further details.

See also

start-collecting-tenplate-info

print-foreign-modules Function

Summary

Prints the foreign modules loaded into the image by r egi st er - modul e.

Package

fli

Signature

print-foreign-nodul es &optional stream verbose => ni |

Arguments

streamd An output stream.
verbose A generalized boolean.
Description

Thefunction pri nt - f or ei gn- nodul es printsalist of the foreign modules loaded viar egi st er - nodul e, to the stream
stream.

The default value of streamisthe value of * st andar d- out put *.

verbose isignored.

133

http://www.lispworks.com/documentation/HyperSpec/Body/v_debug_.htm

7 Function, Macro and Variable Reference

See also

regi ster-nodul e

register-module Function

Summary

Informs LispWorks of the presence of adynamic library.

Package

fli

Signature

regi st er-nmodul e name &ey connection-style lifetime real-name file-name dlopen-flags => name

Arguments
name’] A symbol or string specifying the Lisp name the module will be registered under.
connection-stylel] A keyword determining when the connection to the dynamic library is made. One of
;automatic,:nmanual or:inmmedi at e. Thedefault valueis: aut omat i c.
lifetime A keyword specifying the lifetime of the connection. Oneof : i ndefi ni te or
: sessi on. Thedefault valueis: i ndefinite.
real-namel] Deprecated. Use file-name instead.
file-namel] A pathname designator or ni | .
dlopen-flags] Controls use of dl open on non-Windows platforms. One of t (the default), ni |,
1 ocal - now, : gl obal - now, : gl obal -1 azy, : | ocal -1 azy, or afixnum.
Values
name A symbol or string specifying the Lisp name the module will be registered under.
Description

Thefunction r egi st er - nodul e explicitly informs LispWorks of the presence of aDLL or shared object file, referred to
here as adynamic library. Functions such as make- poi nt er and def i ne-f or ei gn- f unct i on have amodule keyword
which can be used to specify which module the function refers to.

The main use of modules isto overcome ambiguities that can arise when two different dynamic libraries have functions with
the same name.

If an application is delivered after calling r egi st er - nodul e, then the application attempts to reload the module on startup
but does not report any errors. Thereforeit is strongly recommended that you call r egi st er - nodul e during initialization of
your application, rather than at compile time or build time. Loading the module at run time allows you to:

» Report loading errors to the user or application error log.
» Compute the path (as described below), if needed.
» Make the loading conditional, if needed.

134

7 Function, Macro and Variable Reference

You should compute and supply the appropriate full path if possible.

name is used for explicit look up from the : nodul e keyword of functions such asdef i ne-f or ei gn- f uncti on. If nameis
asymbol, then file-name should a so be supplied to provide afilename. file-name defaults to the deprecated argument real-
name, which defaulstoni | . If fileenameisni | then name must be a string that specifies the actual name of the dynamic
library to connect to.

The naming convention for the module name can contain the full pathname for the dynamic library. For example, a pathname
such as:

#P" C: / MYPRODUCT/ LI BS/ MYLI BRARY. DLL"
is specified as:
" C:\\ MYPRODUCT\ \ LI BS\\ MyLI BRARY. DLL"

On Windows, if the module is declared without an extension, ". DLL" is automatically appended to the name. To declare a
name without an extension it must end with the period character (. "). On other platforms, you should provide the extension,
since there is more than one library format. Typical would be. so on Linux, x86/x64 Solaris or FreeBSD and . dyl i b on
macOS.

If afull pathnameis not specified for the module, then it is searched for.
On Windows the following directories (in the given order) are searched:
1. Thedirectory of the executable.
2. The Windows system directory (as specified by Get Syst enDi r ect or y).
3. The 16-bit system directory.
4. The Windows directory (as specified by Get W ndowsDi r ect or y).

5. The current directory. This step can be made to happen earlier, though thisis considered less safe as described in the
Microsoft documentation.

6. Directories specified by the PATH environment variable.

The simplest approach is usually to place the DLL in the same directory as the LispWorks executable or application.
However if you really need different directories then be sureto cal r egi st er - nodul e at run time with the appropriate
pathname.

On Linux, FreeBSD and Solaris the search is conducted in this order:
1. Directories on the user's LD_LI BRARY_PATH environment variable.
2. Thelist of libraries known to the operating system (for example, in/ et ¢/ | d. so. cache on Linux).
3./usr/lib,followedby/Iib.
On macOS, the search is conducted in this order:
1. Directories on the user's LD_LI BRARY_PATH environment variable.
2. Directories on the user's DYLD LI BRARY_PATH environment variable.
3. ~/lib
4. /usr/locall/lib
5. /usr/lib

135

7 Function, Macro and Variable Reference

If connection-styleis: aut omat i ¢ then the system automatically connects to adynamic library when it needs to resolve
currently undefined foreign symbols.

If connection-styleis: manual then the system only connects to the dynamic library if the symbol to resolve is explicitly
marked as coming from this module viathe : nodul e keyword of functions such asdef i ne- f or ei gn- f uncti on.

If connection-styleis: i nedi at e then the connection to the dynamic library is made immediately. This checks that the
library can actually be loaded before its symbols are actually needed: an error issignalled if loading fails.

If lifetimeis: sessi on then the module is disconnected when Lisp starts up.

You should load only libraries of the correct architecture into LispWorks. You will need to obtain a 32-bit dynamic library for
use with 32-bit LispWorks and similarly you need a 64-bit dynamic library for use with 64-bit LispWorks. (If you build the
dynamic library, pass- nB2 or - n64 as appropriate to cc.) You can conditionalize the argument to r egi st er - nodul e asin
the example below.

Note: On Linux, you may see aspurious "No such file or directory" error message when loading a dynamic library of the
wrong architecture. The spurious message might be localized.

Note: static libraries are not supported. For example, on Linux evaluating this form:

(fli:register-module "libc.a"
cfile-nane "/usr/lib/libc.a"
:connection-style :inmrediate)

would result in an error like this:

Coul d not register handle for external nodule "libc"
lusr/lib/libc.a : invalid ELF header

Theproblemisthat | i bc. a isadtatic library. Instead, do:

(fli:register-mdule "libc.so"
:file-nane "libc.so.6"
. connection-style :inmediate)

Notethat : fi | e- nanme isgiven arelative path in this case, because | i bc isastandard library on Linux and it is best to let
the operating system locate it.

dlopen-flags has an effect only on non-Windows platforms. It controls the value that is passed to dl open as second argument
when the module is connected.

The keyword values of dlopen-flags correspond to combinations of RTLD_* constants (see/ usr /i ncl ude/ dl f cn. h). The
valuest andni | meanthesameas: | ocal -1 azy.

A fixnum value means pass this value dlopen-flags to dI open without checking. It isthe responsibility of the caller to get it
right in this case.

Compatibility note:

In LispWorks 7.1 and earlier versions, dlopen-flags defaultsto ni I on macOS, which caused it to use the older interfaces
instead of dl open. Since LispWorks 8.0, thisis no longer supported.

Notes

1. Itisstrongly recommended that you call r egi st er - nodul e during initialization of your application, rather than at
compile time or build time.

136

7 Function, Macro and Variable Reference

2. When devel oping with foreign code in LispWorks, the utilities provided in the Editor are useful - see 9.4.2 Compiling
and L oading Foreign Code with the Editor.

Examples

In the following example on Windows, theuser 32 DLL isregistered, and then aforeign function called set - cur sor - pos
is defined to explicitly reference the Set Cur sor Pos functionintheuser 32 DLL.

(fli:register-nodule :user-dll :file-nane "user32")

(fli:define-foreign-function (set-cursor-pos
" Set Cur sor Pos")
((x :int)
(y :int))
:result-type :int-bool ean
:modul e :user-dll)

This example on Linux loads the shared library even though its symbols are not yet needed. An error issignalled if loading
fals:

(fli:register-nmodule "libX11. so"
:connection-style :inmediate)

This example loads a module from the same directory as the Lisp executable, by executing this code at run time:

(fli:register-nodul e
modulename
:file-nane
(mer ge- pat hnanes "nodul efi | enane. dyl i b"
(1'isp-inmge-nane)))

In thislast example a program which runsin both 32-bit LispWorks and 64-bit LispWorks |oads the correct library for each
architecture:

(fli:register-nodul e #+:1ispworks-32bit "nylib32"
#+:1 i spworks-64bit "nylib64")

See also

5.6 Incorporating a foreign moduleinto a LispWorksimage
connect ed- nodul e- pat hnane
define-foreign-function

nmake- poi nt er

nodul e- unr esol ved- synbol s

print-foreign-nodul es

replace-foreign-array Function

Summary

Copies the contents of one foreign or Lisp array into another.

Package

fli

137

7 Function, Macro and Variable Reference

Signature

repl ace-foreign-array to from &ey startl start2 endl end2 allow-sign-mismatch => to

Arguments
to] A foreign array, foreign pointer or aLisp array.
fromJ A foreign array, foreign pointer or aLisp array.

start1l0, start20, end1, end2[
Integers.
a”ow.g'gn-misrnatch[j A boolean, default valueni | .

Values

to A foreign array, foreign pointer or aLisp array.

Description

Thefunctionr epl ace- f or ei gn- arr ay copies the contents of the array specified by frominto another array specified by
to. The arrays element types must have the same size and both be either signed or unsigned. When allow-sign-mismatch is
ni | (the default), the array element types must also match for sign, that is they must be either both signed or both unsigned.
When allow-sign-mismatch is non-nil, the array element types do not need to match.

The argument to is destructively modified by copying successive elements into it from from. Elements of the subsequence of
from bounded by start2 and end2 are copied into the subsequence of to bounded by startl and endl. If these subsequences
are not of the same length, then the shorter length determines how many elements are copied; the extra elements near the end
of the longer subseguence are not involved in the operation.

Each of to and from can be one of the following:

A Lisp array The start and end are handled in the same way as Common Lisp sequence functions. The array
must be "raw", which means either an integer array of length 8, 16, 32 or 64 bits, or an array of
oneof cl : base-char, | w. bnp-char, cl : si ngl e-fl oat andcl : doubl e-f1l oat . For
matching with the other argument, the latter are considered as "unsigned", with size 8, 16, 32
and 64 bits respectively. Note that arrays with element typecl : char act er are not allowed.

A foreign array The start and end are handled in the same way as Common Lisp sequence functions.
A pointer to aforeign array

The start and end are handled in the same way as Common Lisp sequence functions.

A pointer to any other foreign object
In this case, the pointer is assumed to point to an array of such objects. Start and end are used as
indicesinto that array, but without any bounds checking.

Compatibility note:

In LispWorks 6.1 and earlier versions you can use an array of | w: si npl e- char, that isl w: t ext - st ri ng, because
| w. si npl e- char waslimited to therange that isnow | w. bnp- char and had width of 16.

In LispWorks 7.0 and later versions| w: si npl e- char isasynonym for cl : char act er, and thus arrays of
| w. si npl e-char (thatis, | w: t ext - string) cannot beusedinr epl ace-forei gn-array.

138

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

7 Function, Macro and Variable Reference

Examples
This example demonstrates copying from aforeign pointer to aLisp array.

Aninitial array filled with 42;

(setqg lisp-array
(rmake-array 10
:el enent-type ' (unsigned-byte 8)
sinitial-element 42))

A foreign pointer to 10 consecutive unsigned chars:

(setqg foreign-array
(fli:allocate-foreign-object
:type ' (:unsigned :char)
:nel ens 10
cinitial-contents '(1 234567 89 10)))

Copy some of the unsigned char into the Lisp array. Without : st art 2 and : end2, only the first unsigned char would be
copied:

(fli:replace-foreign-array
|isp-array foreign-array
istartl 3
;start2 5 :end2 8)

=>

#(42 42 42 6 7 8 42 42 42 42)

This example demonstrates copying from aforeign array to aLisp array.

A pointer to aforeign array of 10 unsigned chars:

(setqg foreign-array
(fli:allocate-foreign-object
(type
"(:c-array (:unsigned :char) 10)))

(dotimes (i 10)
(setf (fli:foreign-aref foreign-array i) (1+i)))

Copy part of the foreign array into the Lisp array:

(fli:replace-foreign-array
|isp-array foreign-array :startl 7)

=>

#(42 42 42 6 7 8 42 1 2 3)

See also

al | ocat e-f orei gn- obj ect
copy- poi nter
nmake- poi nt er

repl ace-forei gn-obj ect

139

7 Function, Macro and Variable Reference

replace-foreign-object Function

Summary

Copies the contents of one foreign object into another.

Package

fli

Signature

repl ace-forei gn-object to from &ey nelems => pointer

Arguments

tod A foreign object or apointer to aforeign object.
fromJ A foreign object or a pointer to aforeign object.
nelems] Aninteger.

Values

pointer A pointer to the object specified by from.
Description

Thefunction r epl ace- f or ei gn- obj ect copies the contents of the foreign object specified by from into another foreign
object specified by to. Block copying on an array of elements can aso be performed by supplying the number of elementsto
copy using nelems.

Examples

In the following object two sets of ten integers are defined. The object f r om obj contains the integersfrom 0to 9. The
object t o- obj contains random values. Ther epl ace- f or ei gn- obj ect function isthen used to copy the contents of
from obj intot o-obj .

(setf fromobj
(fli:allocate-foreign-object
ctype :int
:nelems 10
cinitial-contents
'(01234567829)))

(setf to-obj
(fli:allocate-foreign-object
ctype :int
:nelens 10))

(fli:replace-foreign-object to-obj fromobj :nelens 10)

140

7 Function, Macro and Variable Reference

See also

5.2.4 Modifying astringin a C function
al | ocat e-f orei gn-obj ect
fill-foreign-object

copy- poi nter

nmake- poi nt er

repl ace-foreign-array

set-locale Function

Summary

Sets the C locale and the default for FLI string conversions.

Package

fli

Signature

set-local e &optional locale => c-locale

Arguments

locale A string, the locale name.

Values

c-locale A string naming the C locale, or ni | ..
Description

Thefunction set - | ocal e can be called to set the C locale; if you set the locale in any other way, then Lisp might not do the
right thing when passing strings and charactersto C. It callsset | ocal e to tell the C library to switch and then calls

set -1 ocal e- encodi ngs to tell the FLI what conversions to do when passing strings and charactersto C. locale should be
alocale name; if not passed, it defaults according to the OS conventions.

If set -1 ocal e failsto set the C locale, awarningissignaled, ni | isreturned and the FLI conversion defaults are not
modified.

Examples

On aWindows system:
(fli:set-locale "English_UK")

=>
"Engl i sh_United Ki ngdom 1252"

On aLinux system:

(fli:set-locale)
=>
"en_US"

141

7 Function, Macro and Variable Reference

See also

convert-fromforeign-string
convert-to-foreign-string
.ef-nb-string

.ef-we-string

set -l ocal e- encodi ngs
with-foreign-string

set-locale-encodings

Summary

Tellsthe FLI what default conversions to use when passing strings and charactersto C.

Package

fli

Signature

set -l ocal e-encodi ngs mb wc => mb

Arguments

mbd An external format specification.

well An external format specification, or ni | .
Values

mb An external format specification.
Description

Function

Thefunction set - | ocal e- encodi ngs changes the default encodings used by those FLI functions and types which convert

strings and characters and accept an : ext er nal - f or mat argument.

mb is set as the external format for multi-byte encodings.

If weisnon-nil, then it is set as the external format for wide-character encodings, such as: ef - we- st ri ng.

set -1 ocal e callsset - | ocal e- encodi ngs after successfully setting the C locale.

See also

convert-fromforeign-string
convert-to-foreign-string
.ef-nb-string

.ef-we-string

set-local e
with-foreign-string

142

7 Function, Macro and Variable Reference

setup-embedded-module

Summary

Sets up an embedded dynamic module.

Package

fli

Signature

set up- enbedded- nodul e name data

Arguments

namel] A symbol.

datall A Lisp object containing the data of the foreign module.
Description

The function set up- embedded- nodul e sets up an embedded dynamic module named name using data.

data must be aresult of acal to get - enbedded- nodul e- dat a.

Notes

Function

1. set up- embedded- nodul e iscalled at load time and has no effect except to set up the embedded module. To actually

use the code in the module, you need to call i nst al | - enbedded- nodul e at runtime.

2. The effect of set up- enbedded- nodul e persists after save- i mage and del i ver.

3. Seeget - enbedded- nodul e- dat a for more discussion and examples.

4, set up- enbedded- nodul e does not return a useful value.

See also

i nstall -enbedded- nodul e

get - enbedded- nodul e- dat a

get - enbedded- nodul e

5.6 Incorporating a foreign moduleinto a LispWorksimage

size-of

Summary

Returns the size in bytes of aforeign type.

143

Function

7 Function, Macro and Variable Reference

Package

fli

Signature

si ze-of type-name => size

Arguments

type-namel] A foreign type whose size is to be determined.
Values

size The size of the foreign type type-name in bytes.
Description

Thefunction si ze- of returnsthe size in bytes of the foreign language type named by type-name.

Examples

This example returns the size of the C integer type (usually 4 bytes on supported platforms):
(fli:size-of :int)

This example returns the size of a C array of 10 integers:
(fli:size-of '(:c-array :int 10))

The function si ze- of can also be used to determine the size of a structure:
(fli:define-c-struct POS

(x :int)

(y :int)
(z :int))

(fli:size-of 'POS)

See also

2FLI Types
al | ocat e-f or ei gn- obj ect
free-foreign-object

start-collecting-template-info

Summary

Nullifies the FL1 Template information in the image.

144

Function

7 Function, Macro and Variable Reference

Package

fli

Signature

start-collecting-tenplate-info => nil

Description

The FLI converters require pieces of compiled code known as FLI templates, and sometimes your delivered application will
need extratemplates not included in LispWorks as shipped.

Thefunctionstart-col | ecti ng-tenpl at e-i nf o throws away any information about FLI templates that has been
collected. Call it when you want to start collecting to create a definitive set of template information.

See the Delivery User Guide for further details.

See also

print-collected-tenplate-info

use-sse2-for-ext-vector-type Variable

Summary

32-bit x86 specific: control whether to pass/receive vector type arguments/results using SSE2.

Package

fli

Initial Value

t on macOS, ni | on other platforms.

Description

On 32-hit x86 platforms, the variable * use- sse2- f or - ext - vect or - t ype* controls whether the code that is generated by
foreign interface definitions that pass or receive vector type arguments or results (see 2.2.4 Vector types) uses SSE2 to pass
or receive these arguments or results.

SSE?2 is afeature of the x86 CPU, which was introduced by Intel in 2001, and is supported by all new x86 CPUs. However,
the C compiler can still pass arguments without using SSE2 for backwards compatibility. The Lisp definitions must
pass/receive arguments in the same way that as the C compiler that compiled the foreign code they call/are called from.

On macOS, code always uses SSE2, so *use- sse2-f or - ext - vect or -t ype* issettot initially and you should not
changeit. On other platforms (Linux, FreeBSD, Solaris) the situation isless clear.

use-sse2-for-ext-vector-type affectsthe code at macro expansion time, so if you useconpi | e-fi |l e and later
load the compiled file, the value of * use- sse2-f or - ext - vect or - t ype* at thetime of conpi | e-fi | e determine what
the code does. When evaluating the definition, the value at the time of evaluating the definition determines what the code
does.

145

http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

7 Function, Macro and Variable Reference

Notes

On FreeBSD, the default C compiler is Clang, which currently (Dec 2016 in FreeBSD 10.3) does not use SSE2 by defauilt,
and therefore matches what LispWorks does by default.

On other platforms, or using other compilers or newer versions of Clang, if you use vector types then you will need to check
what the C compiler does. If you have any doubt, contact LispWorks support.
See also

2.2.4 Vector types

valid-foreign-type-p Function

Summary

Checksif the argument isavalid foreign type.

Package

fli

Signature

val i d-foreign-type-p type => boolean

Arguments

typel] A Lisp object.
Values

boolean A boolean.
Description

Thefunctionval i d- f or ei gn-t ype- p returnstrueif typeisavalid foreign type and returns fal se otherwise.

An object isavalid foreign typeif it matches any of the types which are described in chapter 2 FLI Types.

See also

2FLI Types
with-coerced-pointer Macro

Summary

Executes forms with a variable bound to a dynamic-extent copy of an FLI pointer, possibly with a different type.

146

7 Function, Macro and Variable Reference

Package

fli

Signature

Wi t h- coer ced- poi nt er (coerced-pointer &key type pointer-type) pointer &body body => last

Arguments

coerced-pointer] A variable bound to a copy of pointer.

typel] The type of the object pointed to by the temporary pointer. This keyword can be used to
access the data at the pointer as a different type.

pointer-typel] The pointer type of the temporary pointer.

pointer] A FLI pointer of which a copy is made.

body[] A list of formsto be executed across the scope of the temporary pointer binding.

Values

last The value of the last form in body.

Description

Themacrowi t h- coer ced- poi nt er makes atemporary copy of a pointer, and executes a list of forms which may use the
copy across the scope of the macro. Once the macro has terminated the memory allocated to the copy of the pointer is
automatically freed.

Themacrowi t h- coer ced- poi nt er evaluates body with coerced-pointer bound to a dynamic-extent copy of the FLI
pointer pointer.

coerced-pointer points to the same foreign object as pointer.

If typeis specified, then it must be a FLI type specifying the type that coerced-pointer pointsto. Alternatively, if pointer-type
is specified, then it must be a FLI pointer type specifying the pointer type of coerced-pointer. If neither type nor pointer-type
are specified then the type is the same as pointer.

You can usewi t h- coer ced- poi nt er inasimilar way to casting a pointer typein C. You can also use it make atemporary
FLI pointer that can be changed using i ncf - poi nt er or decf - poi nt er , without affecting pointer.

Note that coerced-pointer has dynamic-extent, so you should not use it after returning from body.

Examples

In the following example an array of ten integersis defined, pointed to by ar r ay- obj . The macro
Wi t h- coer ced- poi nt er isused to return the values stored in the array, without altering ar r ay- obj , or permanently tying
up memory for a second pointer.

(setf array-obj
(fli:allocate-foreign-object :type :int
:nelems 10
cinitial-contents
'(01234567829)))

(fli:with-coerced-pointer (tenp) array-obj
(dotimes (x 10)
(print (fli:dereference tenp))

147

7 Function, Macro and Variable Reference

(fli:incf-pointer tenp)))

See also

3.4 An example of dynamic pointer allocation
al | ocat e- dynani c- f or ei gn- obj ect
free-foreign-object

wi t h- dynami c-forei gn-objects

with-dynamic-foreign-objects Macro

Summary

Doesthe equivalent of dynani c- ext ent for foreign objects.

Package

fli

Signature
wi t h- dynani c- f or ei gn- obj ect s bindings &ody body => last

bindings :: = (binding*)

binding :: = (var foreign-type &key initial-element initial-contents fill nelems size-slot)

Arguments

body(] Formsto be executed with bindings in effect.

var[J A symbol to be bound to a pointer to aforeign object.

foreign-typel] A foreign type descriptor.

initial-elementd Theinitial value of the newly allocated objects.

initial-contents] A list of valuestoinitialize the contents of the newly allocated objects.

fillo Aninteger between 0 to 255.

nelems] An integer specifying how many copies of the object should be allocated. The default
vaueis1.

size-slot] A symbol naming aslot in the object.

Values

last The value of the last form in body.

Description

Themacrowi t h- dynani c- f or ei gn- obj ect s binds variables according to the list bindings, and then evaluaed the forms
in body as an implicit pr ogn. Each element of bindingsis alist which caused var to be bound to a pointer to alocally
allocated instance of foreign-type.

initial-element, initial-contents, fill, nelems and size-slot initialize the allocated instance as if by

148

http://www.lispworks.com/documentation/HyperSpec/Body/d_dynami.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_progn.htm

7 Function, Macro and Variable Reference

al l ocate-foreign-object.

The lifetime of the bound foreign objects, and hence the alocation of the memory they take up, iswithin the scope of the
wi t h- dynani c-f or ei gn- obj ect s function.

Any object created with al | ocat e- dynani c- f or ei gn- obj ect within body will automatically be deallocated once the
scope of thewi t h- dynani c- f or ei gn- obj ect s function has been left.

Compatibility note

Thereis an alternative syntax for binding with an optional initial-element which is the only way to supply aninitial element
in LispWorks 5.0 and previous versions. Likethis:

binding : : = (var foreign-type &opti onal initial-element)

This aternative syntax is deprecated in favor of the keyword syntax for binding defined above, which is supported in
LispWorks 5.1 and later.

Examples
This example shows the use of wi t h- dynani c- f or ei gn- obj ect s with animplicitly created pointer.

Windows version:

typedef struct {
i nt one;
float two;

} foo ;

__decl spec(dl | export) void __cdecl init_alloc(foo *ptr, int a, float b)

{
ptr->one
ptr->two

};

a;
b;

Non-Windows version:

typedef struct {
int one;
float two;

} foo ;

void init_alloc(foo * ptr, int a, float b)

{
ptr->one

ptr->two

h

a;
b;

Here are the FLI definitionsinterfacing to the above C code:

(fli:define-c-typedef (foo (:foreign-name "foo0"))
(:struct (one :int) (two :float)))

(fli:define-foreign-function (init-alloc "init_alloc")
((ptr (:pointer foo))
(a :int)
(b :float))
:result-type :void
:cal ling-convention :cdecl)

149

7 Function, Macro and Variable Reference

Try thistest function which useswi t h- dynani c- f or ei gn- obj ect s to create atransient f oo object and pointer:

(defun test-alloc (int-value float-value &optional (level 0))
(fli:with-dynan c-foreign-objects ((object foo))
(init-alloc object int-value float-val ue)
(format t "~%evel - ~D~& object ~S~& slot one : ~S~& slot two : ~S~&"
| evel object
(fli:foreign-slot-value object 'one)
(fli:foreign-slot-value object 'two))

(when (> int-value 0)
(test-alloc (1- int-value)
(1- float-value) (1+ level)))
(when (> float-val ue 0)
(test-alloc (1- int-value)

(1- float-value) (1+ level)))))
(test-alloc 1 2.0)
=
Level - O
obj ect #<Pointer to type FOO = #x007E6338>
slot one : 1
slot two : 2.0
Level - 1
obj ect #<Pointer to type FOO = #x007E6340>
slot one : 0O
slot two : 1.0
Level - 2
obj ect #<Pointer to type FOO = #x007E6348>
slot one : -1
slot two : 0.0
Level - 1
obj ect #<Pointer to type FOO = #x007E6340>
slot one : 0O
slot two : 1.0
Level - 2
obj ect #<Pointer to type FOO = #x007E6348>
slot one : -1
slot two : 0.0

A further example using wi t h- dynami c- f or ei gn- obj ect s and a pointer created explicitly by
al | ocat e- dynani c-f or ei gn- obj ect isgivenin 1.4 An example of dynamic memory allocation.

See also

5.2.4 Modifyingastring in a C function
al | ocat e- dynani c- f or ei gn- obj ect
free-foreign-object

W t h- coer ced- poi nt er

with-dynamic-lisp-array-pointer Macro

Summary

Creates a dynamic-extent foreign pointer which points to the datain a given Lisp array while the forms are executed.

150

7 Function, Macro and Variable Reference

Package

fli

Signature

Wi t h-dynami c-1i sp-array-poi nter (pointer-var lisp-array &ey start type) &body body => last

Arguments

pointer-var] A variable to be bound to the foreign pointer.

lisp-arrayC] A static or pinned Lisp array (a string or a byte/single-float/double-float array).
startl] Anindex into the Lisp array.

typel] A foreign type. Thedefaultis: voi d.

body[] A list of forms.

Values

last The value of the last form in body.

Description

Themacrowi t h-dynani c- | i sp-array- poi nter enablesthe datain aLisp array to be shared directly with foreign code,
without making a copy. A dynamic-extent pointer to the array's data can be used within body wherever the : poi nt er foreign
type alows.

wi t h-dynani c-|i sp-array- poi nt er createsadynamic extent foreign pointer, with element type type, whichis
initialized to point to the element of lisp-array at index start. The default value of start isO.

Thisforeign pointer is bound to pointer-var, the forms of body are executed and the value of the last form is returned.
Pointers created with this macro must be used with care. There are three restrictions:
1. lisp-array must be static or pinned, for example allocated as shown below.

2. The pointer has dynamic extent and lisp-array is guaranteed to be preserved only during the execution of body. If you
keep the value of the pointer, you must also preserve lisp-array, that isyou must ensure it is not garbage-collected.

3. Lisp strings and arrays are not null-terminated, therefore foreign code must only access the data of lisp-array up to its
known length.

Examples

An example of using a static array:

(let ((vector
(make-array 3 :element-type ' (unsigned-byte 8)
sinitial-contents ' (65 77 23)
:allocation :static)))
(fli:with-dynam c-1isp-array-pointer
(ptr vector :start 1 :type '(:unsigned :byte))
(fli:dereference ptr)))
=>
77

An example of using a pinned array:

151

7 Function, Macro and Variable Reference

(let ((vector
(make-array 3 :elenment-type ' (unsigned-byte 8)
cinitial-contents ' (65 77 23)
;allocation :pinnable)))
(wi t h- pi nned- obj ects (vector)
(fli:with-dynamc-1isp-array-pointer
(ptr vector :start 1 :type '(:unsigned :byte))
(fli:dereference ptr))))
=>
77

See also
‘lisp-array

:lisp-sinple-1d-array
wi t h- pi nned- obj ect s

with-foreign-block Macro

Summary

Allocates aforeign block, executes code and frees the block, in LispWorks for Macintosh.

Package

fli

Signature

wi t h-f or ei gn- bl ock (foreign-block-var type function &rest extra-args) &body body => results

Arguments

foreign-block-var] A symbol.

typel] A symbol naming aforeign block type defined using
defi ne-forei gn-bl ock-cal | abl e-type.

function A LISp function.

extra-args’] Arguments for function.

body(] Lisp forms.

Values

results The results of body.

Description

Themacrowi t h- f or ei gn- bl ock allocates aforeign block using type, function and extra-argsin the same way as
al | ocat e-f or ei gn- bl ock. It then binds foreign-block-var to the foreign block, execute the code of body and frees the
foreign block using f r ee- f or ei gn- bl ock, using unwi nd- pr ot ect .

wi t h- f or ei gn- bl ock isaconvenient way to ensure that you do not forget to free the foreign block.

152

http://www.lispworks.com/documentation/HyperSpec/Body/s_unwind.htm

7 Function, Macro and Variable Reference

Notes

If the foreign block is copied in the code of body, the copy may be invoked, and hence the function called, after exiting this
macro. Seethe discussion in 5.7.3 Scope of invocation.

wi t h-f or ei gn- bl ock returnsthe results of body.

wi t h- f or ei gn- bl ock isimplemented in LispWorks for Macintosh only.

See also

al | ocat e-forei gn-bl ock
free-foreign-bl ock

wi t h-1ocal -forei gn-bl ock

5.7 Block objectsin C (foreign blocks)

with-foreign-slots Macro

Summary

Allows convenient access to the dots of aforeign structure.

Package

fli

Signature
wi t h-forei gn-sl ot s sots-and-options form &body body
slots-and-options : : = (slots &ey object-type) | dots

dlots :: = (dlot-spect)

slot-spec : : = dot-name | (variable-name dot-name &key copy-foreign-object)
Arguments

form] A form evaluating to an instance of (or a pointer to) a FL| structure.
body(] Forms to be executed.

object-typel] A FLI structure type.

sot-nameld A symbol.

variable-namel] A symbol.

copy-foreign-objectt] t,nil or:error.

Description

Themacrowi t h- f or ei gn- sl ot s isanaogous to the Common Lisp macro wi t h- sl ot s. Within body, each slot-name (or
variable-name) evaluates to the result of calling f or ei gn- sl ot - val ue on formwith that slot. set f can be used to set the
foreign slot value.

If the first syntax of slots-and-optionsis used, then object-type is passed as the value of the : obj ect -t ype keyword

153

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_slts.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

7 Function, Macro and Variable Reference

argument in al the generated callsto f or ei gn- sl ot - val ue. If the second syntax of slots-and-options is used, no object-

typeis passed.

Each dlot-spec can either be a symbol dot-name naming a slot in the object, which will be also be used in body, or alist of
variable-name, a symbol naming adot, and aplist of options. In this case copy-foreign-object is passed as the value of the
: copy- f orei gn- obj ect keyword argument in the generated call tof or ei gn- sl ot - val ue. The default value of copy-

foreign-objectis: error.

Thewi t h-f or ei gn- sl ot s form returns the value of the last form in body.

Examples

(fli:define-c-struct abc
(a :int)
(b :int)
(c :int))

=>

(: STRUCT ABC)

(setf abc (fli:allocate-foreign-object :type 'abc))

=>
#<Pointer to type (:STRUCT ABC) = #x007F3BEO>

(fli:with-foreign-slots (a b ¢) abc
(setf a6 b 7c (* ab)))

=>

42

(fli:foreign-slot-value abc 'c)
=>
42

See also

2.2.3 Structures and unions
forei gn-slot-val ue

with-foreign-string

Summary

Macro

Convertsa Lisp string to aforeign string, binds variables to a pointer to the foreign string, the number of elementsin the
string, and the number of bytes taken up by the string, then executes alist of forms, and finally de-allocates the foreign string

and pointer.

Package

fli

Signature

wi th-foreign-string (pointer element-count byte-count &ey external-format null-terminated-p allow-null) string

&body body => last

154

7 Function, Macro and Variable Reference

Arguments

pointer] A symbol bound to a pointer to the foreign string.

e ement-count] A symbol bound to the number of elementsin the foreign string.

byte-count(] A symbol bound to the number of bytes occupied by the foreign string. If the element size
of the string is equal to one byte, then byte-count will be the same as element-count.

external-format] An external format specification.

null-ter minated-p0] If t, theforeign string is terminated by a null character. The null character isincluded in
the value of element-count.

allow-nulld A boolean. Thedefaultisni | .

stringC] The Lisp string to convert.

body(] A list of forms to be executed.

Values

last The value of the last form in body.

Description

Themacrowi t h- f or ei gn- st ri ng isused to dynamically convert aLisp string to aforeign string and execute alist of
forms using the foreign string. The macro first converts string, a Lisp string, into aforeign string. The symbol pointer is
bound to a pointer to the start of the string, the symbol element-count is set equal to the number of elementsin the string, and
the symbol byte-count is set equal to the number of bytes the string occupies. Then the list of forms specified by body is
executed. Finally, the memory allocated for the foreign string and pointer is de-allocated.

external-format is used to specify the encoding of the foreign string. It defaults to aformat appropriate for C string of type
char *. For Unicode encoded strings, specify : uni code. If you want to pass astring to the Win32 API, known as STRin the
Win32 API terminology, specify *mul ti byt e- code- page- ef *, which isavariable holding the external format
corresponding to the current Windows multi-byte code page. To change the default, call set -1 ocal e or

set - | ocal e- encodi ngs. The names of available external formats are listed in section 26.7 External Formats to translate
Lisp characters from/to external encodingsin the LispWorks® User Guide and Reference Manual.

null-terminated-p specifies whether the foreign string is terminated with anull character. 1t defaultstot . If the string
terminatesin anull character, it isincluded in the value of element-count.

If allow-null is non-nil, then if stringisni | anull pointer is passed.

See also

5.24 Modifying a string in a C function

5.1 Passing a string to a Windows function

26.7 External Formats to trandate Lisp characters from/to external encodings in the LispWorks® User Guide and Reference
Manual

convert-to-foreign-string

set-local e

set -1 ocal e- encodi ngs

wi t h-dynam c-forei gn-obj ects

155

7 Function, Macro and Variable Reference

with-integer-bytes Macro

Summary

Convertsa Lisp integer to foreign bytes while executing a body of code.

Package

fli

Signature

wi t h-integer-bytes (pointer length) integer &ody body => last

Arguments

pointer [A variable to be bound to the foreign pointer.
length] A variable to be bound to the length in bytes.
integerJ Aninteger.

body] Forms to be executed.

Values

last The value of the last form in body.
Description

Themacrowi t h-i nt eger - byt es evaluates the forms in body with pointer bound to a dynamic foreign object containing
the bytes of integer and length bound to the number of bytes in that object. The layout of the bytes is unspecified, but the
bytes and the length are sufficient to reconstruct integer by calling neke- i nt eger - from byt es.

See also

5.3 Lispintegers
convert-integer-to-dynani c-foreign-object
nmake-i nt eger-frombytes

with-local-foreign-block Macro

Summary

Allocates aforeign block, executes code and frees the block, in LispWorks for Macintosh.

Package

fli

156

7 Function, Macro and Variable Reference

Signature

wi t h-1 ocal - forei gn-bl ock (foreign-block-var type function &r est extra-args) &body body => results

Arguments

foreign-block-var A symbol.

typel] A symbol naming aforeign block type defined using
define-foreign-bl ock-call abl e-type.

functiond A Llsp function.

extra-args’] Arguments for function

body[] Lisp forms.

Values

results The results of body.

Description

Themacrowi t h-1 ocal - f or ei gn- bl ock allocates aforeign block using type, function and extra-args in the same way as
al | ocat e-f or ei gn- bl ock, but with dynamic extent. It then binds foreign-block-var to the foreign block and executes the
code of body.

wi t h-1 ocal - f or ei gn- bl ock can be used only if the code in body can be guaranteed not to invoke the block or a copy of it
either outside the scope of wi t h-1 ocal - f or ei gn- bl ock or in another thread. Unless you can be sure of that, you need to
usewi t h-f or ei gn- bl ock.

wi t h-1 ocal - f or ei gn- bl ock returns the results of body.

wi t h-1 ocal - f or ei gn- bl ock can bealittle faster thanwi t h- f or ei gn- bl ock.

Notes

wi t h-1 ocal - f or ei gn- bl ock isimplemented in LispWorks for Macintosh only.

See also

al | ocat e-f orei gn-bl ock
free-foreign-bl ock

wi t h-forei gn-bl ock

5.7 Block objectsin C (foreign blocks)

157

8 Type Reference

:bool FLI Type Descriptor

Summary

Converts between a Lisp boolean value and a_Bool type in the C99 language definition.

Package

keywor d

Syntax

: bool

Description

TheFLI type: bool converts between aLisp boolean value and a_Bool typein the C99 language definition, which is
typically aliased to bool when the stdbool .h header isincluded.

See also

: bool ean
;i nt-bool ean
2.1.5 Boolean types

:boolean FLI Type Descriptor

Summary

Converts between a Lisp boolean value and a C representation of a boolean value as an integer.

Package

keywor d

Syntax

: bool ean &optional encapsulates

Arguments

encapsul ates] Anintegral typeor : st andard.

158

8 Type Reference

Description

The FLI type: bool ean converts between a Lisp boolean value and a C representation of a boolean value. encapsulates
specifies the size of the value from which the boolean value is obtained. For example, if asi gned char isusedin Cto
represent a boolean, the size to map across for the FLI will be one byte, but if ani nt isused, then the size will be four bytes.
If encapsulatesis: st andar d, then the type mapsto the _Bool typein the C99 language definition.

A value of 0 in C representsani | boolean value in Lisp, and anon-zero value in C representsat boolean value in Lisp.

Compatibility Note

Prior to LispWorks 8.1, you could omit encapsulates and it would default to : i nt , but this caused subtle bugsif the API
expected a different size of integer. In LispWorks 8.1 and later, awarning is signalled if you omit encapsulates and you
should check the API's documentation to decide the correct size of integer to specify, or use: bool or: i nt-bool ean if

appropriate.

Examples
In the following two examples, thesizeof a(: bool ean :int) anda(: bool ean : byte) arereturned.
(fli:size-of '(:boolean :int))

(fli:size-of '(:boolean :byte))

See also

: bool

;i nt-bool ean

si ze- of

2.1.5 Boolean types

‘byte FLI Type Descriptor

Summary

Converts between a Lisp integer withaC si gned char.

Package

keywor d

Syntax

s byte

Description

The FLI type: byt e converts between aLisp integer typeand aC si gned char type.

:short
2.1.1 Integral types

159

8 Type Reference

:c-array FLI Type Descriptor

Summary

Converts between aFLI array and a C array type.

Package

keywor d

Syntax

.c-array type & est dimensions

Arguments

typel] The type of the elements of the array.
dimensions[] A sequence of the dimensions of the new array.
Description

TheFLI type: c- ar r ay converts between FLI arrays and the C array type. In C, pointers are used to access the elements of
an array. Theimplementation of the: c- ar r ay type takes this into account, by automatically dereferencing any pointers
returned when accessing an array using f or ei gn- ar ef .

When using the: c- ar r ay type in the specification of an argument to def i ne- f or ei gn- f unct i on, apointer to the array
is passed to the foreign function, as specified by the C language. You are alowed to call the foreign function with aFLI
pointer pointing to an abject of type typeinstead of a FLI array.

When using the: c- ar r ay typein other situations, it acts as an aggregate type like : f or ei gn- array. In particular,
: ¢- ar r ay with more than one dimension is an array containing embedded arrays, not an array of pointers.

dimensions s the dimensions of the array.

Notes
1. : c- array usesthe C convention that the first index value of an array isO.

2. Only usethe: c- ar r ay type when the corresponding C code uses an array with a constant declared size. If you need a
dynamically sized array, then use a pointer type, allocate the array using the nelems argument to
al | ocat e-f or ei gn- obj ect orwi t h-dynani ¢c-f or ei gn- obj ect s and useder ef er ence to access the elements.
The pointer type is more efficient than making : c- ar r ay types dynamically with different dimensions because the FLI
caches information about every different FLI type descriptor that is used.

Examples

The following code defines a 3 by 3 array of integers:

(setqg aaa (fli:allocate-foreign-object
itype '(:c-array :int 3 3)))

The type of thisis equivalent to the C declaration:

160

8 Type Reference

int aaa[3][3];
The next example defines an array of arrays of bytes:

(setqg bbb (fli:allocate-foreign-object
:type '(:c-array (:c-array :byte 3) 2)))

Thetype of thisis equivalent to the C declaration:
int bbb[2][3];

Note the reversal of the 3 and 2.

Seeforeign-aref andforei gn-array- poi nt er for more examples on the use of arrays.

See also

foreign-aref
:foreign-array

forei gn-array-pointer
2.2.1Arrays

:char FLI Type Descriptor

Summary

Converts between aLisp char act er typeand aC char type.

Package

keywor d

Syntax

: char

Description

The FLI type: char converts betweenalisp char act er andaC char type.

Notes

If you want an integer on the Lisp side, rather than achar act er , then you should use (: si gned : char) or
(:unsigned :char).

See also

byte

. si gned

: unsi gned

2.1.4 Character types

161

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

8 Type Reference

:const FLI Type Descriptor

Summary

Corresponds to the C const type.

Package

keywor d

Syntax

. const &optional type

Arguments

typel] The type of the constant. The defaultis: i nt .

Description

The FLI type: const correspondsto the C const type qualifier. The behavior of a: const isexactly the same asthe
behavior of itstype, and it is only included to ease the readability of FLI code and for naming conventions.

Examples

In the following example a constant is allocated and set equal to 3.141.

(setqg pil (fli:allocate-foreign-object
:type '(:const :float)))

(setf (fli:dereference pil) 3.141))

See also

:volatile
2.1 Immediate types

:double FLI Type Descriptor

Summary

ConvertsaLisp doublefloat to a C doubl e.

Package

keywor d

Syntax

: doubl e

162

8 Type Reference

Description

The FLI type: doubl e converts between a Lisp double float and the C doubl e type.

Compatibility Note

In LispWorks 4.4 and previous on Windows and Linux platforms, al Lisp floats are doubles. In later versions, there are three
disjoint Lisp float typesin 32-bit LispWorks and two in 64-bit LispWorks, on all platforms.

See also

: fl oat
2.1.2 Floating point types

:double-complex FLI Type Descriptor

Summary

Converts a Lisp double float complex number to aC doubl e conpl ex.

Package

keywor d

Syntax

: doubl e- conpl ex

Description

The FLI type: doubl e- conpl ex converts between aLisp (conpl ex doubl e-fl oat) andthe C doubl e conpl ex type.

See also

. fl oat-conpl ex
2.1.3 Complex number types

ef-mb-string FLI Type Descriptor

Summary

Converts between a Lisp string and a C multi-byte string.

Package

keywor d

Syntax

cef-nmb-string &ey limit external-format null-terminated-p

163

8 Type Reference

Arguments

limit] The maximum number of bytes of the C multi-byte string.
external-format] An external format specification.

null-ter minated-pC] A boolean controlling the null termination byte.
Description

TheFLI type: ef - mb- st ri ng converts between a Lisp string and a C multi-byte string. The C string may have a maximum

length of limit bytes. limit can be omitted in cases where anew foreign string is being allocated.

external-format is used to specify the encoding of the foreign string. It defaults to an encoding appropriate for C string of
typechar *. If you want to pass a string to the Windows API, known as STRin the Windows API terminology, specify
wi n32: *rul ti byt e- code- page- ef *, which isavariable holding the external format corresponding to the current
Windows multi-byte code page. To change the default, call set - | ocal e or set - | ocal e- encodi ngs.

If null-terminated-p is non-nil, aNULL byte is added to the end of the string.

Notes

If you want to pass a string argument by reference but also allow conversion from Lisp ni | to anull pointer, specify the

:ref erence type: al | ow nul | argument, for example:

(:reference-pass :ef-nb-string :allownull t)

See also

.ef-we-string
:reference

set-local e

set -l ocal e- encodi ngs
2.2.2 Strings

-ef-wc-string

Summary

Converts between a Lisp string and a C wide-character string.

Package

keywor d

Syntax

cef-we-string &ey limit external-format null-terminated-p

Arguments
limit0 The maximum number of characters of the C wide-character string.
external-format] An external format specification.

164

FLI Type Descriptor

8 Type Reference

null-ter minated-pC] A boolean controlling the null termination byte.

Description

The FLI type: ef - we- st ri ng converts between a Lisp string and a C wide-character string. The C string may have a
maximum length of limit characters. limit can be omitted in cases where a new foreign string is being allocated.

external-format is used to specify the encoding of the foreign string. It defaults to an encoding appropriate for C string of
typewchar _t *. For Unicode encoded strings, specify : uni code. If you want to pass a string to the Windows API, known
asWBTRin the Windows API terminology, also specify : uni code. To change the default, call set - 1 ocal e or

set -1 ocal e- encodi ngs.

If null-terminated-p is non-nil, aNULL word is added to the end of the string.

See also

cef-nmb-string
set-locale

set -l ocal e- encodi ngs
2.2.2 Strings

enum
:enumeration FLI Type Descriptors

Summary

Converts between a Lisp symbol and aC enum

Package

keywor d

Syntax
> enum & est enum-constants

;enuneration & est enum-constants

enum-constants : : = {entry-name | (entry-name entry-value) } *

Arguments

enum-constants] A sequence of one or more symbols naming the elements of the enumeration.
entry-namel] A symbol naming an element of the enumeration.

entry-valuel] An integer specifying the value of entry-name.

Description

The FLI type : enumconverts between a Lisp symbol and the C enumtype. Each entry in enum-constants can either consist
of asymbol entry-name, in which case thefirst entry hasavalue O, or of alist of a symbol entry-name and its corresponding
integer value entry-value.

165

8 Type Reference

: enuner at i on isasynonym for : enum

Examples

Seedef i ne- c- enum for an example using the : enumtype.

See also

def i ne-c-enum
2.1.1 Integral types

fixnum

Summary

Converts between a Lisp fixnum and a 32 bit raw integer.

Package

keywor d

Syntax

cfi xnum

Description

The FLI type: f i xnumconverts between a Lisp fixnum and a 32 bit integer in C.

See also

2.1.1 Integral types

float

Summary

ConvertsalLispsinglefloattoaCf | oat .

Package

keywor d

Syntax

:float

Description

TheFLI type: f | oat converts between aLisp single float and the C f | oat type.

166

FLI Type Descriptor

FLI Type Descriptor

8 Type Reference

Compatibility note

In LispWorks 4.4 and previous on Windows and Linux platforms, all Lisp floats are doubles. In later versions, there are three
disjoint Lisp float typesin 32-bit LispWorks and two in 64-bit LispWorks, on all platforms.

See also

: doubl e
2.1.2 Floating point types

float-complex FLI Type Descriptor

Summary

ConvertsaLisp single float complex number toaC fl oat conpl ex.

Package

keywor d

Syntax

: fl oat-conpl ex

Description

TheFLI type: f | oat - conpl ex converts between aLisp (conpl ex single-float) andtheCfl oat conpl ex type.

See also

: doubl e- conpl ex
2.1.3 Complex number types

.foreign-array FLI Type Descriptor

Summary

Converts between aFLI array and aforeign array type.

Package

keywor d

Syntax

:foreign-array type dimensions

Arguments
typel] The type of the elements of the array.
dimensions] A list containing the dimensions of the array.

167

8 Type Reference

Description

TheFLI type: f or ei gn- arr ay converts between FLI arrays and the foreign array type. It creates an array with the
dimensions specified in dimensions, of elements of the type specified by type.

The: f orei gn- ar r ay typeisan aggregate type. In particular, : f or ei gn- ar r ay with more than one dimension is an array
containing embedded arrays, not an array of pointers.

Notes

Only usethe: f or ei gn- ar r ay type when the corresponding foreign code uses an array with a constant declared size. If you
need a dynamically sized array, then use a pointer type, allocate the array using the nelems argument to

al | ocat e-f orei gn- obj ect orwi t h-dynani c-f or ei gn- obj ect s and use der ef er ence to access the elements. The
pointer type is more efficient than making : f or ei gn- ar r ay types dynamically with different dimensions because the FLI
cachesinformation about every different FLI type descriptor that is used.

Examples

The following code defines a 3 by 4 foreign array with elements of type: byt e.

(setq farray (fli:allocate-foreign-object
:type '(:foreign-array :byte (3 4))))

Thetype of thisis equivalent to the C declaration:

signed char array2[3][4];

See also

:c-array
forei gn-aref

forei gn-array-pointer
2.2.1Arrays

foreign-block-pointer FLI Type Descriptor

Summary

The foreign type corresponding to the opaque "Block" object in C and derived languages.

Package

fli

Syntax

f or ei gn- bl ock- poi nter

Description

The FLI typef or ei gn- bl ock- poi nt er corresponds to the opaque "Block" object in C and derived languages that are
introduced in CLANG and used by Apple.

A foreign block pointer should be regarded as opaque, and should not be manipulated or used except as described in 5.7
168

8 Type Reference

Block objectsin C (foreign blocks).

Notes

A foreign block that is allocated directly by the Lisp side (for example by al | ocat e- f or ei gn- bl ock or

wi t h-f or ei gn- bl ock) printsas” | i sp-f or ei gn- bl ock- poi nter".

f or ei gn- bl ock- poi nt er isimplemented in LispWorks for Macintosh only.

See also

al | ocat e-f orei gn-bl ock
define-foreign-block-call abl e-type
defi ne-foreign-bl ock-i nvoker

f or ei gn- bl ock- copy

f orei gn- bl ock-rel ease
free-foreign-bl ock

r el eased- f orei gn- bl ock- poi nter

wi t h-forei gn-bl ock

wi t h-1ocal -forei gn-bl ock

5.7 Block objectsin C (foreign blocks)

:function

Summary

Converts between Lisp and the C function type.

Package

keywor d

Syntax

:function &optional argsspec return-spec &ey calling-convention

Arguments
args-specl] A list of foreign types.
return-specl] A foreign type.

calling-conventions] A keyword naming the calling convention.

Description

FLI Type Descriptor

TheFLI type: f uncti on alowsfor conversion from the C function type. It istypically used in conjunction with the

: poi nt er typeto reference an existing foreign function.

args-spec and return-spec specify the argument types and return type respectively.

calling-convention is as described for def i ne- f or ei gn- f uncti on.

169

8 Type Reference

Examples

The following code lines present a definition of a pointer to afunction type, and a corresponding C definition of the type. The
function type is defined for a function which takes as its arguments an integer and a pointer to avoid, and returns an integer
value.

(:pointer (:function (:int (:pointer :void)) :int))

int (*)(int, void *)

See also

. poi nter

:int8

'intl6

:int32

:int64

intmax

intptr FLI Type Descriptors
Summary

The signed sized integer types.

Package

keywor d

Syntax
1int8

1int16
1int32
1int64
© i nt max

intptr

Description

FLI types are defined for integers of particular sizes. These are equivalent to the types defined by 1SO C99. For example,
Lisp:int8isISO C99int8 t.

The types have these meanings:
(int8 8-bit signed integer.

(int16 16-hit signed integer.

170

8 Type Reference

;int32 32-hit signed integer.

(int64 64-bit signed integer.

i nt max The largest type of signed integer available.
Cintptr A signed integer the same size as a pointer.
See also

:uint8

2.1.1 Integral types

‘int FLI Type Descriptor

Summary

Converts between aLisp integer and aCi nt type.

Package

keywor d

Syntax
tint
Description

TheFLI type: i nt converts between an Lispinteger andaCi nt type. It isequivaent to the: si gned and
(:signed :int) types.

See also

. si gned
2.1.1 Integral types

:int-boolean FLI Type Descriptor

Summary

Converts between Lisp booleanand Cii nt .

Package

keywor d

Syntax

1int-bool ean

171

8 Type Reference

Description

TheFLI type: i nt - bool ean converts between aLisp booleanandaCi nt. Lispni | isconverted to 0in C, and a non-nil
valueisconvertedto 1in C. 0in Cisconvertetoni | , and any other valuein Cisconvertedtot .

Notes

;i nt-bool ean isintended to be used in "old" C where conceptual booleans are declared i nt . For example, the C function
i satty returnsani nt, but conceptually it is aboolean.

If the C typeis_Bool (or bool when the stdbool.h header isincluded), then you should use: bool instead of
i nt-bool ean.
See also

: bool ean
: bool
2.1.5 Boolean types

lisp-array FLI Type Descriptor

Summary

A foreign type which passes the address of a Lisp array direct to C.

Package

keywor d

Syntax

:lisp-array &optional type

Arguments

typeld A list. Thedefaultisni | .

Description

TheFLI type: i sp-array acceptsalisp array and passes a pointer to the first element of that array. The Lisp array may
be non-simple.

It isvital that the garbage collector does not move the Lisp array, hence: | i sp- arr ay checksthat the array is statically
alocated, or alocated pinnable and pinned using wi t h- pi nned- obj ect s.

Note also that the Lisp garbage collector does not know about the array in the C code. Therefore, if the C function retains a
pointer to the array, then you must ensure the Lisp object is not collected, for example by retaining a pointer to it in Lisp.

The argument type, if non-nil, isalist (element-type & est dimensions) and is used to check the element type and
dimensions of the Lisp array passed.

Examples

This C function fills an array of doubles from an array of single floats.

172

8 Type Reference

Windows version:

__decl spec(dl |l export) void __cdecl ProcessFloats(int count, float * fvec
{
for(--count ; count >= 0 ; count--) {
dvec[count] = fvec[count] * fvec[count];

}
}

Non-Windows version:

voi d ProcessFloats(int count, float * fvec, double * dvec)
{
for(--count ; count >= 0 ; count--) {
dvec[count] = fvec[count] * fvec[count];
}
}

The following Lisp code demonstratestheuse of : 1 i sp-array inacall to ProcessFl oat s:

(fli:define-foreign-function (process-floats
"ProcessFl oats")
((count :int)
(fvec :lisp-array)
(dvec :lisp-array)))

(defun test-process-floats (Ilength)
(let ((f-vector
(make-array |ength
;el enent-type 'single-float
cinitial-contents
(loop for x bel ow
| ength
col | ect
(coerce x 'single-float))
;allocation :static))
(d-vector
(make-array |ength
;el enent-type 'doubl e-fl oat
cinitial-element 0.0DO
;allocation :static)))
(process-floats length f-vector d-vector)
(dotimes (x |ength)
(format t "f-vector[~D] = ~A; d-vector[~D] = ~A~%
X (aref f-vector x)
X (aref d-vector x)))))

Now:
(test-process-floats 3)
prints:

si ngl e-array[0]
singl e-array[1]
si ngl e-array[2]

0; doubl e-array[0]
0; doubl e-array[1]
0; doubl e-array][2]

TRRTIT
NP o
(TITIT
PO
coo

See also

:lisp-sinple-1d-array
W th-dynam c-1i sp-array-pointer

173

doubl e * dvec)

8 Type Reference

Wi t h- pi nned- obj ect s

:lisp-double-float FLI Type Descriptor

Summary

A synonym for : doubl e.

Package

keywor d

Syntax

:1isp-doubl e-fl oat

Description

TheFLI type: 1 i sp- doubl e-f1 oat isthesameasthe FLI : doubl e type.

See also

: doubl e
2.1.2 Floating point types

lisp-float FLI Type Descriptor

Summary

Converts between any Lisp float and the C doubl e type or the Cf | oat type.

Package

keywor d

Syntax

:lisp-float &optional float-type

float-type : : = :single | :double

Arguments

float-typel] Determines the C type to convert to. The defaultis: si ngl e.
Description

TheFLI type: i sp-fl oat convertsbetween any Lisp float and either the C f | oat or the C doubl e type. The default isto
convert tothe C f | oat type, but by specifying : doubl e for float-type, conversion occurs between any Lisp float and the C
doubl e type.

174

8 Type Reference

See also

: doubl e
: fl oat
2.1.2 Floating point types

lisp-simple-1d-array FLI Type Descriptor

Summary

A foreign type which passes the address of aLisp simple vector direct to C.

Package

keywor d

Syntax

:lisp-sinple-1d-array &optional type

Arguments

typel] A list. Thedefaultisnil .

Description
TheFLI type: i sp-si npl e- 1d- ar r ay accepts aLisp simple vector and passes a pointer to the first element of that vector.
The Lisp vector must be simple. That is, it does not have afill pointer, is not adjustable, and it is not a displaced array.

It isvital that the garbage collector does not move the Lisp vector, hence: | i sp- si npl e- 1d- ar r ay checksthat the vector
isstatically allocated or alocated pinnable, in which caseit is pinned implicitly asif by wi t h- pi nned- obj ect s.

The argument type, if non-nil, isalist (element-type & est dimensions) and is used to check the element type and
dimensions of the Lisp array passed.

See also

:lisp-array
W th-dynam c-1i sp-array-pointer

-lisp-single-float FLI Type Descriptor

Summary

A synonym for : f | oat .

Package

keywor d

175

8 Type Reference

Syntax

:lisp-single-float

Description

TheFLI type: i sp-singl e-fl oat isthesameastheFLI : f | oat type.

See also

: fl oat
2.1.2 Floating point types

:long FLI Type Descriptor

Summary

Converts between aLispi nt eger andaCl ong.

Package

keywor d

Syntax
;1 ong &optional integer-type

integer-type ::= :int | :double | :long

Arguments

Description

The FLI type: | ong converts between the Lispi nt eger typeandtheC1 ong type. See A comparison between Lisp and
C long types for comparisons between Lisp and C long types.

A comparison between Lisp and C long types

Lisp type FLI type Ctype

i nt eger ;1 ong | ong
i nt eger :long :int | ong
i nt eger :long :double | ong doubl e

i nt eger :long :1ong I ong | ong
:long-long

See also

Jint
: 1 ong-1 ong
:short

176

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

8 Type Reference

2.1.1 Integral types

:long-long FLI Type Descriptor

Summary

Converts between aLispi nt eger andasigned Cl ong | ong.

Package

keywor d

Syntax

:1ong-1ong

Description

TheFLI type: | ong- | ong converts betweenthe Lispi nt eger typeandthe Cl ong | ong type.

Notes

Thisis supported only on platformswherethe C 1 ong | ong typeisthe same size asthe C | ong type.

See also

: |l ong
2.1.1 Integral types

:one-of FLI Type Descriptor

Summary

Converts between Lisp and C types of the same underlying type.

Package

keywor d

Syntax

:one-of &rest types

Arguments

types] A list of types sharing the same underlying type.

Description

The FLI type: one- of isused for values that can be one of a number of types specified by types. The types must have the
same underlying structure, which means they must have the same size and must be referenced in the same manner. The FLI

177

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

8 Type Reference

: one- of typeisuseful when aforeign function returns a value whose underlying type is known, but whose exact type is not.

Examples

In the following example, a: one- of typeisallocated.

(setqg thing (fli:allocate-foreign-object
:type '(:one-of :ptr :intptr :uintptr)))

If t hi ng isset to be 100 using der ef er ence, it istaken to be an object of type: i nt pt r, asthisisthefirst element in the
sequence of types defined by : one- of which matches the type of the number 100.

(setf (fli:dereference thing) 100)

However, if t hi ng is now dereferenced, it is returned as a pointer to the address 100 (Or hex address 64), asthereisno
method for determining the type of t hi ng, and therefore the first element in thelist of : one- of isused.

(fli:dereference thing)

See also

> uni on

‘pointer
ptr FLI Type Descriptors

Summary

Defines a C-style FLI pointer to an object of a specified type.

Package

keywor d

Syntax
: poi nter type

Sptr type

Arguments

typel] Thetype of FLI object pointed to by the pointer.

Description

TheFLI type: poi nt er ispart of the FLI implementation of pointers. It defines a C-style pointer to an object of type.
Passing ni | instead of apointer is treated the same as passing a null pointer (that is, a pointer to address 0).

: ptr isasynonymfor : poi nter.

For more details on pointers, including examples on pointer coercion, dereferencing, making, and copying see 3 FL |
Pointers. -

178

8 Type Reference

See also

copy- poi nter
der ef erence
nmake- poi nt er
nul | - pointer
2.1.6 Pointer types

ptrdiff-t FLI Type Descriptor

Summary

Converts between a Lisp integer and an 1SO C ptrdiff t.

Package

keywor d

Syntax

cptrdiff-t

Description

TheFLI type: ptrdiff-t converts between alispinteger and an SO C ptrdiff_t type, which isan signed integer
representing the difference in bytes between two pointers.

.-reference FLI Type Descriptor

Summary

Passes a foreign object of a specified type by reference, and automatically dereferences the object.

Package

keywor d

Syntax

:reference type &ey allow-null lisp-to-foreign-p foreign-to-lisp-p

Arguments

typel] The type of the object to pass by reference.

allow-null] A boolean.

lisp-to-foreign-pC] If non-nil, allow conversion from Lisp to the foreign language. The default valueist .
foreign-to-lisp-pC] If non-nil, allow conversion from the foreign language to Lisp. The default valueist .

179

8 Type Reference

Description

The FLI type: r ef er ence isessentially the same asa: poi nt er type, except that : r ef er ence is automatically
dereferenced when it is processed.

The: r ef er ence typeisuseful asaforeign function argument. When afunction is called with an argument of the type
(:reference type), anobject of typeisdynamically allocated across the scope of the foreign function, and is automatically
de-allocated once the foreign function terminates. The value of the argument is not copied into the temporary instance of the
object if lisp-to-foreign-p isni | , and similarly, the return value is not copied back into a Lisp object if foreign-to-lisp-pis
nil.

If allow-null is non-nil and the input argument isni | then anull pointer is passed instead of a reference to an object
containing ni | . allow-null defaultstoni | .

Notes

If the argument is of an aggregate type and foreign-to-lisp-p is true, then amalloc'd copy is made which you should |ater free
explicitly. It isusualy better to use: poi nt er , make the temporary foreign object using
wi t h-dynani c-f or ei gn- obj ect s and then copy whatever slots you need into anormal Lisp object on return.

Examples

In the following example an : i nt isallocated, and a pointer to the integer is bound to the Lisp variable nunber . Then a
pointer to nunber, called poi nt 1, isdefined. The pointer poi nt 1 is set to point to nunber , itself apointer, buttoan:int.

(setqg nunber (fli:allocate-foreign-object :type :int))
(setf (fli:dereference nunber) 42)

(setqg pointl (fli:allocate-foreign-object
:type '(:pointer :int)))

(setf (fli:dereference pointl) nunber)

If poi nt 1 isdereferenced, it returns apointer to an ;i nt . To get at the value stored in the integer, we need to dereference
twice:

(fli:dereference (fli:dereference pointl))

However, if we dereference poi nt 1 asa: r ef er ence, we only have to dereference it once to get the value:

(fli:dereference pointl :type '(:reference :int))

See also

:reference- pass
:reference-return

.-reference-pass FLI Type Descriptor

Summary

Passes an object from Lisp to the foreign language by reference.

180

http://www.lispworks.com/documentation/HyperSpec/Body/t_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_number.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_number.htm

8 Type Reference

Package

keywor d

Syntax

:reference-pass type &ey allow-null

Arguments

typel The type of the object to pass by reference.
allow-nullO A boolean.

Description

TheFLI type: r ef er ence- pass isequivalent to:

(:reference :lisp-to-foreign-p t
:foreign-to-lisp-p nil)

See: r ef er ence for the details of how type and allow-null are used.

See also

:reference
:reference-return

‘reference-return

Summary

Passes an object from the foreign language to Lisp by reference.

Package

keywor d

Syntax

:reference-return type &ey allow-null

Arguments

typel The type of the object to return by reference.
allow-nullJ A boolean.

Description

TheFLI type: ref er ence-r et ur n isequivalent to:

(:reference :lisp-to-foreign-p ni
:foreign-to-lisp-pt)

181

FLI Type Descriptor

8 Type Reference

See: r ef er ence for the details of how type and allow-null are used.

See also

:reference
. reference- pass

released-foreign-block-pointer

Summary

The type of foreign blocks that have been rel eased.

Package

fli

Syntax

r el eased- f or ei gn- bl ock- poi nt er

Description

FLI Type Descriptor

TheFLI typer el eased- f or ei gn- bl ock- poi nt er isthetype of released foreign blocks.

The system marks foreign blocks that have been released by f or ei gn- bl ock-r el ease asbeing of foreign type

r el eased-f or ei gn- bl ock-poi nter.

See also

f or ei gn- bl ock- poi nter
f orei gn- bl ock-rel ease

:short

Summary

ConvertsbetweenaLispfi xnumtypeand aC short type.

Package

keywor d

Syntax
:short &optional integer-type

integer-type :: = :int

Arguments

FLI Type Descriptor

integer-type If specified, must be: i nt , which associatesaLisp fi xnumwithaCi nt .

182

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm

8 Type Reference

Description
TheFLI type: short associatesalLispfi xnumwithaCshort.

TheFLI types: short, (:short :int),(:signed :short),and(:signed :short :int) areequivaent.

See also

Jint
. si gned
2.1.1 Integral types

:signed FLI Type Descriptor

Summary

Converts between a Lisp integer and aforeign signed integer.

Package

keywor d

Syntax

:signed &optional integer-type

integer-type :: = :byte | :char | :short | :int | :long | :long :int | :short :int
Arguments

integer-typel] The type of the signed integer.

Description

The FLI type: si gned converts between a Lisp integer and aforeign signed integer. The optional integer-type argument
specifies other kinds of signed integer types. See Table A comparison of Lisp and C signed types for a comparison between
Lisp and C signed types.

A comparison of Lisp and C signed types

Lisp type FLI type Ctype

i nt eger : signed signed int
fi xnum :signed :byte si gned char
fi xnum :signed :char si gned char
fixnum :signed :short si gned short
i nt eger :signed :int si gned int

i nt eger :signed :1ong si gned | ong
fi xnum :signed :short :int si gned short
i nt eger :signed :long :int signed | ong

183

http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

8 Type Reference

See also

cast -i nt eger

: unsi gned
2.1.1 Integral types

‘Size-t

Summary

Converts between aLisp integer and an 1SO C size t.

Package

keywor d

Syntax

isize-t

Description

FLI Type Descriptor

TheFLI type: si ze-t converts between aLisp integer and an SO C size t type, which is an unsigned integer representing

the size of an object in bytes.

See also

:Sssize-t

Ssize-t

Summary

Converts between a Lisp integer and the platform-specific ssize _t type.

Package

keywor d

Syntax

1 ssize-t

Description

FLI Type Descriptor

TheFLI type: ssi ze-t converts between a Lisp integer and a platform-specific ssize t type, which isasigned integer

representing the size of an object in bytes.

See also

1size-t

8 Type Reference

:struct FLI Type Descriptor

Summary

Converts between aFLI| structureand aC st r uct .

Package

keywor d

Syntax

»struct &rest dlots

dlots :: = {symbol | (symbol slot-type)}*

dot-type ::= type | (:bit-field integer-type size)

Arguments

dots A sequence of one or more slots making up the structure.

symbol A symbol naming the dot.

typel] The dot type. If notypeisgiven it defaultstoan:int.

integer-typel] Aninteger type. Only :int, (: unsigned :int) and(:signed :int) areguaranteed
to work on al platforms.

sizel] An integer specifying anumber of bits for the field.

Description

TheFLI type: st ruct isan aggregate type, and converts between aFLI structureand aC st r uct type. The FLI structure
consists of a collection of one or more slots. Each dot has a name symbol and atype type. A structure can also contain bit
fields, which are integers of type integer-type with size bits.

Thef or ei gn- sl ot - nanes, f orei gn-sl ot -t ype, and f or ei gn- sl ot - val ue functions can be used to access and
change the slots of the structure. The convenience FLI function def i ne- c- st ruct is provided to simplify the definition of
structures.

Examples

In the following example a structure for passing coordinates to Windows functions is defined.

(fli:define-c-struct tagPONT (x :long) (y :1ong))

An instance of the structure is allocated and bound to the Lisp variable pl ace.

(setqg pl ace
(fli:allocate-foreign-object :type 'tagPO NT))

Finally, thex dot of pl ace issettobe4 usingfli: foreign-slot-val ue.

(setf (fli:foreign-slot-value place 'x) 4)

185

8 Type Reference

See also

defi ne-c-struct
forei gn-sl ot - nanes
foreign-slot-offset
foreign-slot-pointer
foreign-slot-type
forei gn-sl ot-val ue
2.2.3 Structures and unions

‘time-t

Summary

Converts between a Lisp integer and the platform-specific time _t type.

Package

keywor d

Syntax

ctinme-t

Description

FLI Type Descriptor

TheFLI type: ti me-t converts between aLisp integer and an 1SO C time_t type, which is an integer type used for storing

system time values.

:uint8
uintl6
:uint32
uint64
uintmax
-uintptr

Summary

The unsigned sized integer types.

Package

keywor d
Syntax
;uint8

:uintl16

186

FLI Type Descriptors

8 Type Reference

T ui nt 32
:ui nt 64
T ui nt max

suintptr

Description

FLI types are defined for integers of particular sizes. These are equivalent to the types defined by 1SO C99. For example,

Lisp: ui nt 8isISO C99 uint8 t.

The types have these meanings:

;uint8 8-hit unsigned integer.

juint16 16-bit unsigned integer.

:uint 32 32-bit unsigned integer.

1 uint64 64-bit unsigned integer.

: ui nt max The largest type of unsigned integer available.
suintptr An unsigned integer the same size as a pointer.
See also

1int8

2.1.1 Integral types

:union
Summary

Converts between a FLI union and a C uni on type.

Package

keywor d

Syntax
:union &rest dots

dots :: = {symbol | (symbol type)}*

Arguments

slots A sequence of one or more slots making up the union.
symbol A symbol naming the slot.

typel] The slot type. If no typeisgiven, it defaultstoan: i nt .

187

FLI Type Descriptor

8 Type Reference

Description

The FLI type: uni on isan aggregate type, and converts between a FLI union and a C uni on type. The FLI union consists of
acollection of one or more dots, only one of which can be active at any one time. The size of the whole union structureis

therefore equal to the size of the largest slot. Each slot has a name symbol and atype type.

Thef or ei gn- sl ot - nanes, f or ei gn-sl ot -t ype, andf or ei gn- sl ot - val ue functions can be used to access and
change the dlots of the union. The convenience FLI function def i ne- c- uni on is provided to simplify the definition of

unions.

Examples

In the following example a union type with two slots is defined.

(fli:define-c-union ny-nunber
(small :byte) (large :int))

Aninstance of the union is allocated and bound to the Lisp variable| engt h.

(setqg length
(fli:allocate-foreign-object :type 'my-nunber))

Finally, thesmal | dot of the unionis set equal to 24.

(setf (fli:foreign-slot-value length 'snall))

See also

def i ne- c- uni on
forei gn-sl ot -nanes
foreign-slot-offset
forei gn-slot-pointer
foreign-slot-type
forei gn-sl ot-val ue
2.2.3 Structures and unions

:unsigned

Summary

Converts between a Lisp integer and aforeign unsigned integer.

Package

keywor d

Syntax
:unsi gned &opti onal integer-type

integer-type :: = :byte | :char | :short | :int | :long | :long :int | :short

188

FLI Type Descriptor

Tint

8 Type Reference

Arguments

integer-typel]

Description

The FLI type: unsi gned converts between a Lisp integer and aforeign unsigned integer. The optional integer-type argument
specifies other kinds of unsigned integer types. See Table A comparison of Lisp and C unsigned types for a comparison

between Lisp and C unsigned types.

The type of the unsigned integer.

A comparison of Lisp and C unsigned types

Lisp type FLI type C type

i nt eger :unsi gned unsi gned int
fi xnum ;unsigned : byte unsi gned char
fixnum ;unsigned : char unsi gned char
fixnum :unsigned :short unsi gned short
i nt eger sunsigned :int unsi gned i nt

i nt eger sunsigned :1ong unsi gned | ong
fixnum ;unsigned :short :int unsi gned short
i nt eger ;unsigned :long :int unsi gned | ong

See also

cast -i nt eger
. signed
2.1.1 Integral types

vector-char2
vector-char3
vector-char4
vector-char8
vector-charl6
vector-char32
vector-uchar2
vector-uchar3
vector-uchar4
vector-uchar8
vector-ucharl6
vector-uchar32
vector-short2
vector-short3

189

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_fixnum.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

8 Type Reference

vector-short4
vector-short8
vector-shortl6
vector-short32
vector-ushort2
vector-ushort3
vector-ushort4
vector-ushort8
vector-ushortl6
vector-ushort32
vector-int2
vector-int3
vector-int4
vector-int8
vector-intl6
vector-uint2
vector-uint3
vector-uint4
vector-uint8
vector-uintl6
vector-longl
vector-long2
vector-long3
vector-long4
vector-long8
vector-ulongl
vector-ulong2
vector-ulong3
vector-ulong4
vector-ulong8
vector-float2
vector-float3
vector-float4
vector-float8
vector-float16
vector-double2

190

8 Type Reference

vector-double3
vector-double4
vector-double8

Summary

Convert between Lisp vectors and C vector types.

Package

fli

Syntax

vect or-char 2
vect or-char 3
vector-char4
vect or-char 8
vect or-char 16
vect or - char 32
vect or-uchar 2
vect or-uchar 3
vect or-uchar4
vect or-uchar 8
vect or-uchar 16
vect or - uchar 32
vect or-short 2
vector-short3
vector-short4
vector-short8
vector-short 16
vect or-short 32
vector-ushort 2
vect or-ushort 3
vector-ushort4
vect or-ushort 8
vector-ushort 16
vect or - ushort 32

vector-int2

191

FLI Type Descriptors

8 Type Reference

vector-int3
vector-int4
vector-int8
vector-int16
vector-uint2
vector-uint3
vector-uint4
vector-uint8
vector-uintl16
vector-1ongl
vect or-1ong2
vector-1ong3
vect or -1 ong4
vector-1ong8
vect or - ul ongl
vect or - ul ong2
vect or - ul ong3
vect or - ul ong4
vect or - ul ong8
vector-fl oat2
vector-float3
vector-float4
vector-fl oat8
vector-fl oat 16
vect or - doubl e2
vect or - doubl e3
vect or - doubl e4

vect or - doubl e8

Description

See 2.2.4 Vector typesfor afull description.

192

8 Type Reference

:void
Summary

Represents the C voi d type.

Package

keywor d

Syntax

:void

Description

FLI Type Descriptor

TheFLI type: voi d represents the C void type. It can only be used in afew limited circumstances, as the:

* result-type of adefi ne-f orei gn-function, defi ne-foreign-funcal |l abl e ordefi ne-foreign-callable

form. Inthis case, it means that no values are generated.

 element type of a: poi nt er type, thatis(: poi nter :void). Any FLI pointer can be converted to this type, for

example when used like this as the argument typein def i ne- f or ei gn-f uncti on.

» element type of aFLI pointer when memory is not being allocated, for examplein acall to nake- poi nter. Itisan
error to dereference a FLI pointer with element type : voi d (but wi t h- coer ced- poi nt er can be used).

e expansion of adefi ne-c-typedef ordefine-foreign-type form. Thetype defined in thisway can only be used

in situations where: voi d isallowed.

See also

. poi nter
2.5 Thevoid type

volatile

Summary

Correspondsto the Cvol atii | e type.

Package

keywor d

Syntax

:volatile &optional type

Arguments

193

FLI Type Descriptor

8 Type Reference

typel] Thetype of thevolatile. The defaultis: i nt .

Description

TheFLI type: vol ati | e correspondsto the C++ vol at i | e type. The behavior of a: vol ati | e isexactly the same asthe
behavior of itstype, and it is only included to ease the readability of FLI code and for naming conventions.

See also

. const

:wchar-t FLI Type Descriptor

Summary

Converts between a Lisp character and aC wchar _t .

Package

keywor d

Syntax

:wehar -t

Description

The FLI type: wchar -t converts between a Lisp character and aC wehar _t type.

‘wrapper FLI Type Descriptor

Summary

Allows the specification of automatic conversion functions between Lisp and an instance of aFLI type.

Package

keywor d

Syntax

:wr apper foreign-type &key lisp-to-foreign foreign-to-lisp

Arguments

foreign-typel] The underlying type to wrap.

lisp-to-foreignC] Code specifying how to convert between Lisp and the FLI.
foreign-to-lisp Code specifying how to convert between the FLI and Lisp.

194

8 Type Reference

Description

TheFLI type: wr apper alowsfor an extralevel of conversion between Lisp and aforeign language through the FLI. With
the : wr apper type you can use lisp-to-foreign and foreign-to-lisp to specify conversion functions from and to an instance of
another type foreign-type. Whenever datais passed to the object, or received from the object it is passed through the
conversion function. See below for an example of ause of : wr apper to passvaluestoan: i nt asstrings, and to receive
them back as strings when the pointer to the : i nt is dereferenced.

Examples

In the following example an : i nt isallocated with awrapper to allow the : i nt to be accessed as a string.

(setg wap (fli:allocate-foreign-object
:type ' (:wapper :int
:lisp-to-foreign read-fromstring
:foreign-to-lisp prinl-to-string)))

The object pointed to by wr ap, athough consisting of an underlying : i nt , is set with der ef er ence by passing a string,
which isautomatically converted using the Lisp function r ead- f r om st ri ng. Similarly, when wr ap is dereferenced, the
valuestored asan : i nt isconverted using pri nl-to-string toalisp string, which isthe returned. The following two
commands demonstrate this.

(setf (fli:dereference wap) "#x100")

(fli:dereference wrap)

The first command sets the value stored at wr ap to be 256 (100 in hex), by passing a string to it. The second command
dereferences the value at wr ap, but returnsit asa string. The pointer wr ap can be coerced to return the value as an actual
i nt asfollows:

(fli:dereference wap :type :int)

See also

2.4 Encapsulated types

195

http://www.lispworks.com/documentation/HyperSpec/Body/f_rd_fro.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm

9 The Foreign Parser

9.1 Introduction

The Foreign Parser automates the generation of Foreign Language Interface defining forms, given files containing C
declarations.

The result does often need some editing, due to ambiguitiesin C.

9.1.1 Requirements
The Foreign Parser requires a C preprocessor, so you must have a suitable preprocessor installed on your machine.

By default LispWorks invokescl . exe (VC++) on Windows and cc on other platforms. If you have thisinstalled, then make
sureit ison your PATH.

On Windows, if you don't havecl . exe, download the VC++ toolkit from Microsoft.
Preprocessors known to work with LispWorks are:

* Microsoft Visual Studio'scl . exe.

e cc

* gcc

To use a preprocessor other than the default, set the variable f or ei gn- par ser: * pr epr ocessor *, for example:

(setf foreign-parser:*preprocessor* "gcc")

9.2 Loading the Foreign Parser

The Foreign Parser isin aloadable modulef or ei gn- par ser.

Load it by:

(require "foreign-parser")

9.3 Using the Foreign Parser

Theinterfaceisthe function f or ei gn- par ser: process-foreign-file.

Suppose we wish to generate the FL1 definitions which interface to the C example from 5.2.4 M odifying a stringina C
function. The header filet est . h needsto be dlightly different depending on the platform.

Windows version:

__decl spec(dll export) void __cdecl nodify(char *string)

196

9 The Foreign Parser

Non-Windows version:
voi d nodi fy(char *string)
1. Load the Foreign Parser:
(require "foreign-parser")
2. Now generate prototype FLI definitions:

(foreign-parser:process-foreign-file

"test.h"
:case-sensitive nil)
=>

Qutput dff file #P'test-dff.|isp"

Parsing source file "test.h"
Process-foreign-file : Preprocessing file
Process-foreign-file : Level 1 parsing
Process-foreign-file : Selecting foreign forns

NI L

3. You should now haveaLispfilet est - df f. | i sp containing aform like this:

(fli:define-foreign-function
(modi fy "nodi fy" :source)
((string (:pointer :char)))

:result-type

:void

;1 anguage

:c

:cal l'i ng-convention
:cdecl)

4. This edited version passes astring using : ef - mb- st ri ng:

(fli:define-foreign-function
(rmodi fy "nmodi fy" :source)
((string (:reference (:ef-nb-string :linmt 256))))

:result-type
:void
;1 anguage
ic
:cal ling-convention
:cdecl)
=>
MODI FY

5. CreateaDLL containing the C function.

6. Load the foreign code by:
(fli:register-nodule "test.dl ")
or:

(fli:register-nodule "/tnp/test.so")

197

9 The Foreign Parser

7. Call the C function from LISP:

(rmodify "Hello, I amin LISP")

=

NI L

""Hello, | amin LISP nodified in a C function"

9.4 Using the LispWorks Editor

The LispWorks Editor's C Mode offers a convenient alternative to using f or ei gn- par ser : process-foreign-file
directly as above. It also allows you to generate and load a C object file.

To use this, you should be familiar with the LispWorks Editor as described in the LispWorks IDE User Guide and the Editor
User Guide.

9.4.1 Processing Foreign Code with the Editor
1. Openthefilet est . h inthe LispWorks Editor. Note that the buffer isin C Mode, indicated by "(C)" in the mode line.
2. Usethe menu command Buf f er > Eval uat e, or equivalently run Met a+X Eval uate Buffer.

3. A new buffer namedt est. h (C >LI SP) iscreated. It contains the prototype FLI definition forms generated by
forei gn-parser:process-foreign-file.

4. You can now edit the Lisp forms if necessary (note that your new buffer isin Lisp mode) and save them to file. Follow
the previous example from Step 4.

9.4.2 Compiling and Loading Foreign Code with the Editor
1. Openthefilet est . c inthe LispWorks Editor. Note that the buffer isin C Mode, indicated by "(C)" in the mode line.
2. Use the menu command Buf f er > Conpi | e, or equivalently run Met a+X Conpil e Buffer.

3. Your Cfileis compiled with the same options as| w: conpi | e- syst emwould use, and the object file isloaded. The
object file nameis printed in the Output tab. It iswritten in your temporary directory (seecreat e-tenmp-fil e) and
deleted after r egi st er - nodul e iscalled onit.

9.5 Foreign Parser Reference

preprocessor Variable

Summary

The default value for the preprocessor used by pr ocess-forei gn-file.

Package

f orei gn- par ser

Initial Value

"cc" on Non-Windows systemsand " cl " on Windows.

198

9 The Foreign Parser

Description

Thevariable * pr epr ocessor * provides the default value for the preprocessor used by pr ocess-forei gn-file.

See also

preprocessor-opti ons
process-foreign-file

preprocessor-format-string Variable

Summary

Provides the default value for the preprocessor-format-string used by pr ocess-foreign-file.

Package

forei gn- parser
Initial Value
On Windows:
"\"~A\" /nologo /E ~A ~{/D~A ~}~{/I\"~A\" ~}/Tc \"~A""
On Non-Windows systems:

"~A -E ~A ~{-D~A~ ~}~{-1~A ~}\"~A""

Description

Thevariable * pr epr ocessor - f or mat - st ri ng* provides the default value for the preprocessor-format-string used by
process-foreign-file.

See also

process-foreign-file

preprocessor-include-path Variable

Summary

Provides the default value for the preprocessor-include-path used by pr ocess-forei gn-fil e.

Package

f orei gn- par ser
Initial Value
nil

199

9 The Foreign Parser

Description

Thevariable * pr epr ocessor - i ncl ude- pat h* provides the default value for the preprocessor-include-path used by
process-foreign-file.

See also

process-foreign-file

preprocessor-options Variable

Summary

Provides the default preprocessor-options passed to the preprocessor used by process-forei gn-file.

Package

forei gn- parser
Initial Value

nil

Description

Thevariable * pr epr ocessor - opt i ons* provides the default preprocessor-options passed to the preprocessor used by
process-foreign-file.

See also

preprocessor
process-foreign-file

process-foreign-file Function

Summary

Parses foreign declarations to create Lisp FLI definition.

Package

f orei gn- par ser

Signature

process-foreign-file source &ey dff language preprocess preprocessor preprocessor-format-string preprocessor-options
include-path case-sensitive package

Arguments

sourcel] One or more filenames.

200

9 The Foreign Parser

dff] A filename.
languagel] A keyword.
preprocess] A boolean.
preprocessor [] A string.

preprocessor-format-string(]

A string.
preprocessor-optionsC] A string.
include-path] Alist.
case-sensitivel] See description.
packagel] A package designator or ni | .
Description

The function pr ocess- f orei gn-fi |l e takesafile or files of foreign declarations — usually header files— and parses
them, producing "dff' files of Lisp definitions using def i ne- f or ei gn- f uncti on, def i ne-f or ei gn-vari abl e,
defi ne-f orei gn-type, and so on, providing a Lisp interface to the foreign code.

source gives the name of the header files or file to be processed. The name of afile consists of source-file-name and source-
file-type (typically . h).

dff is an output file which will contain the Lisp foreign function definitions. The default valueisni |, in which case the dff
file will be source-file-name- df f . 1 i sp. (See source, above.)

language specifies the language the header files are written in. Currently the supported languages are : ¢ (standard K&R C
header files) and : ansi - ¢c. Thedefault valueis: ansi - c.

preprocess, when non-nil, runs the preprocessor on the input files. The default valueist .

preprocessor-format-string should be a format string which is used to make a preprocessor command line. The format
arguments are a pathname or string giving the preprocessor executable, alist of strings giving the preprocessor options, alist
of strings giving macro names to define, alist of pathnames or strings contain the include path, and a source pathname. On
Windows, the default contains options needed for VC++. The default isthe value of * pr epr ocessor - f or mat - stri ng*.

preprocessor is a string containing the pathname of the preprocessor program. By default thisis the value of
preprocessor.

preprocessor-options is a string containing command line options to be passed to the preprocessor if it is called. By default
thisisthe value of * pr epr ocessor - opti ons*.

include-path should be alist of pathnames or strings that will be added as the include path for the preprocessor. The default is
the value of * pr epr ocessor -i ncl ude- pat h*.

case-sensitive specifies whether to maintain case sensitivity in symbol names as in the source files. Values can be:

t The names of all Lisp functions and classes created are of the form |name|. Thisis the default
value.
ni | All foreign names are converted to uppercase and an error is signalled if any name clashes occur

asaresult of this conversion. For example, OneTwo THREE becomes ONETWOTHREE.

:split-name Attempts to split the name up into something sensible. For example, One Two THREE becomes
ONE- TWO- THREE.

201

9 The Foreign Parser

cprefix Changes lowercase to uppercase and concatenates the string with the string held in
sys: *prefi x- nanme- st ri ng*. For example, OneTwo THREE becomes
FOREI GN- ONETWOTHREE.

(:user-routine function-name)

Enables you to pass your own function for name formatting. Your function must take a string
argument and return a string result. It is not advised to use destructive functions (for example,
nr ever se) asthismay cause unusual side effects.

If case-sensitive takes any other value, names are not changed.

package is used to generate an i n- package form at the start of the output (dff) file. The name of the package designated by
package is used in thisform. The default value of package is the value of * package* .

Note that in some cases the derived Lisp FLI definitions will not be quite correct, due to an ambiguity in C. char * can mean
apointer to a character, or astring, and in many cases you will want to pass astring. Therefore, pr ocess-foreign-file
isuseful for generating prototype FLI definitions, especially when there are many, but you do need to check the results when
char * isused.

See also

regi ster-nodul e
preprocessor
preprocessor-opti ons

202

http://www.lispworks.com/documentation/HyperSpec/Body/f_revers.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm

Glossary

aggregate type

Any FLI type which is made up of other FLI types. This can be either an array of instances of agiven FLI type, or a
structured object.

Arrays, string, structure, and unions are all aggregate types. Pointers are not aggregates.

callable function

A body of Lisp code, defined with the FLI macro def i ne- f or ei gn- cal | abl e, which can be called as afunction
from aforeign language.

coer ced pointer

A coerced pointer isapointer that is dereferenced with the : t ype key in order to return the value pointed to as a
different type than specified by the pointer type. For example, a pointer to a byte can be coerced to return a boolean on

dereferencing.

FLI
The Foreign Language I nterface, which consists of the macros, functions, types and variables defined inthef | i
package.

FLI code

Code written in Lisp using the functions, macros and typesinthef | i package.

FLI function
A functioninthef | i package used tointerface Lisp with aforeign language.

FLI type

A datatype specifierinthef | i package used to define data objects that interface between Lisp and the foreign
language. For example, aC | ong might be passed to LispWorks through an instance of the FLI type: | ong, from
whichitistransferredtoalispi nt eger.

foreign callable function

See callable function.

foreign function

A Lisp function, defined using the FLI macro def i ne- f or ei gn- f unct i on, which calls afunction writtenin a
foreign language. A foreign function contains no body, consisting only of aname and alist of arguments. The function
in the foreign language provides the body of the foreign function.

foreign language

A language to which Lisp can be interfaced using the FLI. Currently the FLI interfacesto C, and therefore also the
Win32 API functions.

203

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

Glossary

immediate type

See scalar type.

pointer

A FLI type consisting of an address and atype specification. A pointer normally points to the memory location of an
instance of the type specified, although there might not actually be an allocated instance of the type at the pointer
location.

A pointer is aboxed foreign object because it contains type information about the type it is pointing to (so that we can
dereferenceit). In'C' apointer can be represented by a single register.

scalar type
A FLI type that is not an aggregate type. The FLI type maps directly to asingle foreign type such as integer, floating
point, enumeration and pointer.

wrapper

A description of the: wr apper FLI type which "wraps' around an object, alowing data to be passed to or obtained
from the object as though it was of a different type. A wrapper can be viewed as a set of conversion functions defined
on the object which are automatically invoked when the wrapped object is accessed.

204

| ndex

A
accessors
dereference 93
f orei gn- aref 98
foreign-slot-value 109
f orei gn-typed- ar ef 112
aggregate FLI types 2: FLI Types 17, 2.2: Aggregatetypes 19
aggregate types 2: FLI Types 17
align-of function 54
al l oca function 55
al | ocat e-dynani c-f orei gn-obj ect function 55
al | ocat e-f orei gn-bl ock function 56
al | ocat e-f orei gn-obj ect function 57
alocating memory dynamically 1.4: Anexample of dynamic memory allocation 16, al | ocate-forei gn-object 58

Android 4.2.2: ARM 32-hit calling conventions 35

B

Block object 5.7 : Block objectsin C (foreign blocks) 50
:bool FLI typedescriptor 158

: bool ean FLI typedescriptor 158

:byte FLItypedescriptor 159

C
C 5.7: Blockobjectsin C (foreign blocks) 50
calingfromLisp 1.1.1: Definingthe FLI function 12, 5.7.1: Calling foreign code that receives a block asargument 50
calling from Lispwithablock 5.7.1: Calling foreign code that receives a block as argument 50
calingintoLisp 4.1: Foreign callables and foreign functions 32
C++
calingfromLisp 1.1.1: Definingthe FLI function 12, 5.7.1: Calling foreign code that receives a block asargument 50
calling from Lispwithablock 5.7.1: Calling foreign code that receives a block as argument 50
calingintoLisp 4.1: Foreign callables and foreign functions 32
calling convention
specifying 4.2: Specifying a calling convention. 34
:c-array FLItypedescriptor 160
cast-integer function 59
C code
declarations 9.1: Introduction 196

205

Index

:char FLI typedescriptor 161
CLANG 5.7: Block objectsin C (foreign blocks) 50
condition classes

foreign-type-error 114
connect ed- nodul e- pat hnane function 59
:connection-style

argumenttor egi ster-modul e register-nodule 134
:const FLI typedescriptor 162
convert-fromforeign-string function 60
convert-integer-to-dynam c-foreign-object function 62
convert-to-dynam c-foreign-string function 62
convert-to-foreign-string function 63

copy-poi nter function 65

D

decf - poi nter function 66
defi ne-c-enum macro 67
define-c-struct macro 68
define-c-typedef macro 71
defi ne-c-union macro 72
define-foreign-bl ock-call abl e-type macro 73
defi ne-foreign-bl ock-i nvoker macro 74
define-foreign-callable macro 76 4.1: Foreigncallablesand foreignfunctions 32, 4.1.1: Sringsand foreign callables 34
define-foreign-converter macro 79
define-foreign-forward-reference-type macro 81
define-foreign-funcallable macro 82
define-foreign-function macro 83 4.1: Foreigncallablesand foreign functions 32
define-foreign-pointer macro 87 3.1.1: Creating pointers 25
define-foreign-type macro 88 2: FLITypes 17
define-foreign-variable macro 89
defi ne- opaque-pointer macro 91
defining FLI functions 1.2.2: Defining a FLI function 15
defining FLI types 1.2.1: Defining FLI types 14
defining forms

ambiguity process-foreign-file 202

automated generation 9.1: Introduction 196
def system macro 5.6: Incorporating a foreign module into a LispWorksimage 49
dereference accessor 93
di sconnect - nodul e function 94
DLLs

exporting functionsfrom 5.5: Using DLLswithin the Lisp\Works FLI 48

206

Index

documentation strings 2: FLI Types 17
. doubl e FLI typedescriptor 162
: doubl e- conpl ex FLI typedescriptor 163

dynamic memory alocation 1.4: Anexample of dynamic memory allocation 16

E
cef-nb-string FLItypedescriptor 163
cef-we-string FLItypedescriptor 164
Embedded dynamic modules 5.6 : Incorporating a foreign module into a LispWorksimage 49
: embedded- nodul e member option for def syst em
type: cfile 5.6: Incorporating a foreign moduleinto a Lisp\orksimage 49
:enum FLI typedescriptor 165
senuneration FLItypedescriptor 165
enum synbol s function 95
enum synbol -val ue function 95
enum synbol -val ue-pairs function 95
enum val ues function 95
enum val ue- synbol function 95
environment variable
DYLD LI BRARY_PATH register-nmodule 135
LD LI BRARY_PATH register-nodule 135 register-mdule 135
PATH register-nodule 135

=

fill-foreign-object function 97
:fixnum FLI typedescriptor 166
FLI functions

defining 1.2.2: Defining a FLI function 15
FLI templates print-collected-tenplate-info 133, start-collecting-tenplate-info 145
FLI type constructors ~ 2: FLI Types 17
FLI type descriptors

: bool 158

:bool ean 158

tbyte 159

:c-array 160

: char 161
. const 162
: doubl e 162

:doubl e-conpl ex 163
cef-nb-string 163
ref-we-string 164

renum 165

207

Index

senuneration 165

cfixnum 166

:fl oat 166

:float-complex 167

:foreign-array 167

f or ei gn- bl ock- poi nter 168 5.7: Block objectsin C (foreign blocks)
:function 169

intl16 170

nt32 170

nt64 170

nt8 170

tint 171

nt - bool ean 171

nt max 170

ntptr 170

clisp-array 172

:1isp-doubl e-fl oat 174

2lisp-float 174

:lisp-sinple-1d-array 175

:1isp-single-float 175

:long 176

:long-long 177

| pcstr 5.2.8: Win32 API functionsthat handle strings 45
| pctstr 5.28: Win32 API functionsthat handle strings 46
| pcwstr 5.2.8: Win32 API functions that handle strings 45
[ptstr 5.2.8: Win32 API functions that handle strings 46

: one- of 177

: poi nter 178

iptr 178

cptrdiff-t 179

:reference 179

. ref erence- pass 180

:reference-return 181

r el eased- f or ei gn- bl ock- poi nter 182

:short 182
:signed 183
1size-t 184

1 ssize-t 184

str 5.2.8: Win32 API functionsthat handle strings 45
:struct 185

ctime-t 186

208

50

Index

tstr

:uintle 186
1uint32 186
ruint64 186
uint8 186

Ui nt max 186
ruintptr 186

;uni on 187

5.2.8: Win32 API functions that handle strings

:unsigned 188

vect or - char 16
vect or-char 2
vector-char3
vect or - char 32
vect or-char 4
vect or-char 8
vect or - doubl e2
vect or - doubl e3
vect or - doubl e4
vect or - doubl e8
vector-float 16
vector-float2
vector-float3
vector-float4
vector-float8
vector-intl6
vector-int2
vector-int3
vector-int4
vector-int8
vector-1|ongl
vector -1 ong2
vector-| ong3
vect or -1 ong4
vector-1| ong8
vector-short 16
vector-short2
vector-short3
vector-short 32
vector-short4
vector-short8

vect or -uchar 16

189
189
189

189
189
189

190
190
191
191
190

190

190

190

190
190

190
190
190
190
190
190
190
190
190
190
189
189
190
190
190
189

46

209

Index

vect or - uchar 2
vect or-uchar 3
vect or - uchar 32
vect or-uchar 4
vect or-uchar 8
vect or - ui nt 16
vect or - uint2

vector-uint3

vector-uint4

vector-uint8

vect or - ul ongl
vect or - ul ong2
vect or - ul ong3
vect or - ul ong4

vect or - ul ong8

vect or-ushort 16

vect or-ushort 2

vector-ushort3

vect or -ushort 32

vector-ushort4
vector-ushort8
:void 193
:volatile
:wehar -t 194
T W apper 194
wstr
FLI types
aggregate
defining
defining new types

193

2: FLI Types 17,

189
189
189
189
189
190
190
190
190
190
190
190
190
190
190
190
190
190
190
190
190

5.2.8: Win32 API functionsthat handle strings 45

2.2 Aggregatetypes 19

1.2.1: Defining FLI types 14

5.4: Defining new types 48

immediate 2: FLI Types 17
:float FLItypedescriptor 166
:float-conmpl ex FLItypedescriptor 167
foreign-aref accessor 98
:foreign-array FLItypedescriptor 167
foreign-array-di nensi ons function 99
foreign-array-el ement-type function 100
foreign-array-pointer function 101
forei gn- bl ock-copy function 102
foreign-bl ock-pointer FLItypedescriptor 168 5.7:

Block objectsin C (foreign blocks)

210

50

Index

foreign-bl ock-rel ease function 103
Foreign blocks 5.7 : Block objectsin C (foreign blocks) 50
foreign callable
defining 4.1: Foreign callables and foreign functions 32
passing and returning strings 4.1.1: Sringsand foreign callables 33
foreign-function-pointer function 104
Foreign Parser 9.1: Introduction 196
foreign-slot-names function 105
foreign-slot-offset function 106
foreign-slot-pointer function 107
foreign-slot-type function 108
foreign-slot-value accessor 109
forei gn-synbol -defi ned-p function 111
foreign-typed-aref accessor 112
foreign-type-equal -p function 113
foreign-type-error condtionclass 114
free function 115
free-foreign-block function 114
free-forei gn-object function 115
:function FLItypedescriptor 169
functions
al i gn- of 54
alloca 55
al | ocat e-dynani c-f or ei gn- obj ect 55
al | ocate-forei gn-block 56
al | ocat e-forei gn-obj ect 57
cast-integer 59
connect ed- nodul e- pat hnane 59
convert-fromforeign-string 60
convert-integer-to-dynam c-forei gn-object 62
convert-to-dynam c-foreign-string 62
convert-to-foreign-string 63
copy- poi nt er 65
decf - poi nter 66
di sconnect-nmodule 94
enum synbols 95
enum synbol -value 95
enum synbol -val ue-pairs 95
enumvalues 95
enum val ue- synbol 95

fill-foreign-object 97

211

Index

foreign-array-di nensions 99
foreign-array-elenment-type 100
foreign-array-pointer 101
foreign-bl ock-copy 102
foreign-block-rel ease 103

f orei gn-function-poi nter 104
foreign-slot-names 105
foreign-slot-offset 106

f orei gn-sl ot-pointer 107
foreign-slot-type 108

forei gn-synbol -defined-p 111
foreign-type-equal-p 113
free 115

free-foreign-block 114
free-foreign-object 115

get - enbedded- nodul e 116

get - enbedded- nodul e-data 117
i ncf-poi nter 118

i nstal |l -enbedded-nodul e 119
make-integer-frombytes 121
make- poi nt er 122

mal l oc 57

nmodul e-unr esol ved-synbols 124

nul |l -pointer-p 125

poi nt er - addr ess 126
poi nter-el ement -size 127
poi nter-element-type 128

pointer-el ement-type-p 129
pointer-eq 130
pointerp 131

poi nter-pointer-type 132

print-collected-tenplate-info 132
pr

process-foreign-file 200

nt - f or ei gn- nodul es 133

regi ster-nodule 134

repl ace-foreign-array 137
repl ace-f orei gn- obj ect 140
set-locale 141

set-local e-encodi ngs 142
set up- enbedded- nodul e 143
si ze- of 143

212

Index

start-collecting-tenplate-info 144

val i d-foreign-type-p

G

146

GCD 5.7: Block objectsin C (foreign blocks) 50

gdi+ 5.8: Interfacing to graphicsfunctions 52

gdiplus 5.8: Interfacing to graphics functions 52

get - enbedded- nodul e function 116

get - enbedded- nodul e-data function 117

Grand Central Dispaich 5.7 :

Block objectsin C (foreign blocks) 50

graphicsfunctions 5.8: Interfacing to graphicsfunctions 52

immediate FLI types 2: FLI Types 17

i ncf-pointer function

118

i nstal | -enbedded- nodul e function 119

install - enbedded- nodul e- del ay-del ete variable 121

:int16 FLI type descriptor

170

int32 type foreign-typed-aref 113

;int32 FLI type descriptor

170

int64 type foreign-typed-aref 113

:int64 FLI type descriptor
:int8 FLI type descriptor
cint FLI type descriptor

170
170

171

;int-bool ean FLItypedescriptor 171

sintmax FLI type descriptor

sintptr FLI type descriptor

170
170

iOS 4.2.2: ARM 32-bit calling conventions 35

L

languages supported 1: Introductiontothe FLI 12

lifetine

argumenttor egi ster-modul e register-nodule 134
Linux 4.2.2: ARM 32-bit calling conventions 35

Lisp

calingfromC 4.1: Foreign callables and foreign functions 32

calingfrom C++ 4.1: Foreign callables and foreign functions 32

calingintoC 1.1.1: Defining the FLI function 12, 5.7.1: Calling foreign code that receives a block as argument
calingintoC++ 1.1.1: Defining the FLI function 12, 5.7.1: Calling foreign code that receives a block as argument

calling into C with ablock
cdling into C++ with ablock

5.7.1: Calling foreign code that receives a block as argument

5.7.1: Calling foreign code that receives a block as argument

:lisp-array FLItypedescriptor 172

213

50

50

50

Index

:1isp-doubl e-float FLItypedescriptor 174

:lisp-float FLItypedescriptor 174

:lisp-sinple-1d-array FLItypedescriptor 175

:lisp-single-float FLItypedescriptor 175

| ocal e-external -formats variable 121

:long FLItypedescriptor 176

:long-1ong FLItypedescriptor 177

| pcstr FLItypedescriptor 5.2.8: Win32 API functionsthat handle strings 45
| pctstr FLItypedescriptor 5.2.8: Wn32 API functions that handle strings 46
| pcwstr FLItypedescriptor 5.2.8: Wn32 API functions that handle strings 45

| ptstr FLItypedescriptor 5.2.8: Win32 API functionsthat handle strings 46

M
macros
define-c-enum 67
define-c-struct 68
define-c-typedef 71
define-c-union 72
define-foreign-block-callable-type 73
defi ne-foreign-bl ock-invoker 74
define-foreign-callable 76 4.1: Foreign callablesand foreign functions 32, 4.1.1: Sringsand foreign callables 34
define-foreign-converter 79
define-foreign-forward-reference-type 81
define-foreign-funcallable 82
define-foreign-function 83 4.1: Foreign callablesand foreign functions 32
def i ne-f orei gn- poi nter 87 3.1.1: Creating pointers 25
define-foreign-type 88 2: FLITypes 17
define-foreign-variable 89
def i ne- opaque- poi nt er 91
def system 5.6: Incorporating a foreign module into a LispWorksimage 49
wi t h- coer ced- poi nt er 146
wi t h-dynani c-forei gn-obj ects 148
wi t h-dynani c-1i sp-array-poi nter 150
wi th-foreign-block 152
with-foreign-slots 153
with-foreign-string 154
with-integer-bytes 156
wi t h-1ocal -foreign-block 156
make-i nteger-frombytes function 121
make- poi nter function 122

mal | oc function 57

214

Index

memory alocation 1.4: Anexample of dynamic memory allocation 16, 3.1.3: Allocation of FLI memory 26

nodul e- unr esol ved-synbol s function 124

N
New in LispWorks 7.0

64-bit integer FLI types supported in 32-bit LispWorks ~ defi ne-foreign-callable 77, dereference 93, foreign-slot-
value 110

foreign-function-pointer function 104

hard-float and soft-float calling conventions for ARM platforms 4.2.2: ARM 32-bit calling conventions 35
rel eased-f or ei gn- bl ock- poi nter FLI typedescriptor 182

repl ace-foreign-array function 137

Store aforeign modulein aLisp image with def sy st emmember option : enbedded-module 5.6: Incorporating a foreign module into a
LispWorksimage 49

New in LispWorks 7.1
ARM 64-bit platform 4.2.3: ARM 64-hit calling conventions 36
fastcall calling convention for 32-bit x86 platforms ~ 4.2.4: Fastcall on 32-bit x86 platforms 36
i0S calling convention for ARM 32-bit platforms ~ 4.2.2: ARM 32-hit calling conventions 35
specifying variadic foreign functions defi ne-forei gn-function 85
use-sse2-for-ext-vector-type varisble 145
:vari adi c- num of -fi xed keyword define-foreign-function 85
vector types 2.2.4: \ector types 20

New in LispWorks 8.0
delay-delete argument to i nst al | - enbedded- nodul e install -enbedded- nodul e 120
: doubl e-conpl ex FLI typedescriptor 163
:float-conpl ex FLItypedescriptor 167
instal | - enbedded- nodul e- del ay-del ete variable 121
valid-foreign-type-p function 146

New in LispWorks 8.1
:bool FLI typedescriptor 158
f or ei gn- synmbol - defi ned-p function 111
;int-bool ean FLItypedescriptor 171

nul | - pointer variable 124

nul | - poi nter-p function 125

null pointers 3.2: Pointer testing functions 26

O
:one-of FLI typedescriptor 177

P
:poi nter FLItypedescriptor 178
poi nt er-address function 126
poi nter-el ement -si ze function 127

poi nter-el ement-type function 128

215

Index

poi nter-el ement-type-p function 129
poi nter-eq function 130
poi nterp function 131
poi nter-pointer-type function 132
pointers 3: FLI Pointers 25
coercing 3.3: Pointer dereferencing and coercing 27
copying 3.1.2: Copying pointers 26
creating 3.1.1: Creating pointers 25
dereferencing 3.3 Pointer dereferencing and coercing 27
dynamically alocating 3.4: Anexample of dynamic pointer allocation
null pointers 3.2 Pointer testing functions 26
test functionsfor ~ 3.2: Pointer testing functions 26
preprocessor variable 198 9.1.1: Requirements 196
preprocessor-format-string variable 199
preprocessor-include-path variable 199
preprocessor-options variable 200
print-collected-tenplate-info function 132
print-foreign-nodul es function 133
process-foreign-file function 200
:ptr FLI typedescriptor 178
cptrdiff-t FLI typedescriptor 179

R

:reference FLI typedescriptor 179

:reference-pass FLI typedescriptor 180
:reference-return FLItypedescriptor 181

regi ster-nmodul e function 134

rel eased- f or ei gn- bl ock- poi nter FLI typedescriptor 182
repl ace-foreign-array function 137

repl ace-forei gn-object function 140

S

Self-contained examples
foreign blocks 6.1: Foreign block examples 53
miscellaneous examples 6.2: Miscellaneous examples 53

set-1local e function 141

set -l ocal e-encodi ngs function 142

set up- enbedded- nodul e function 143

:short FLItypedescriptor 182

:signed FLItypedescriptor 183

si ze-of function 143

:size-t FLItypedescriptor 184

216

Index

.ssize-t FLItypedescriptor 184

start-col l ecting-tenpl ate-info function 144

str FLItypedescriptor 5.2.8: Win32 API functionsthat handle strings 45

strings
modifyinginC 5.2.4: ModifyingastringinaC function 40
passingtoC 5.1: Passing a stringto aWndowsfunction 37, 5.2.2: Passingastring 38
returningfromC 5.2.3: Returning a string via a buffer 39

:struct FLI typedescriptor 185

T
templates, FLI print-collected-tenplate-info 133, start-collecting-tenplate-info 145
:time-t FLItypedescriptor 186

tstr FLItypedescriptor 5.2.8: Wn32 API functionsthat handle strings 46
typeconstructors 2: FLI Types 17
types

int32 foreign-typed-aref 113

int64 foreign-typed-aref 113

U

:uintl1l6 FLItypedescriptor 186
;uint32 FLItypedescriptor 186
jui nt 64 FLI typedescriptor 186

:uint8 FLItypedescriptor 186

sui ntmax FLI typedescriptor 186

cuintptr FLItypedescriptor 186
sunion FLItypedescriptor 187
:unsigned FLI typedescriptor 188

use-sse2-for-ext-vector-type variable 145

\%
val id-foreign-type-p function 146
variables
instal | - erbedded- nodul e- del ay- del et e 121
| ocal e- external -formats 121
nul | - poi nter 124
preprocessor 198 9.1.1: Requirements 196
preprocessor-format-string 199
preprocessor-incl ude- pat h 199
preprocessor-options 200
use-sse2-for-ext-vector-type 145
vector-char16 FLItypedescriptor 189
vector-char2 FLI typedescriptor 189

217

Index

vector-char3 FLI type descriptor

vect or-char 32

FLI type descriptor

vect or-char4 FLI type descriptor

vect or-char8 FLI type descriptor

vect or - doubl e2
vect or - doubl e3
vect or - doubl e4
vect or - doubl e8
vector-fl oat 16
vector-float2
vector-float3
vector-float4

vector-fl oat8

FL1 type descriptor
FL1 type descriptor
FLI type descriptor
FL 1 type descriptor
FL 1 type descriptor
FLI type descriptor
FLI type descriptor
FLI type descriptor
FLI type descriptor

vector-intl6 FLI type descriptor

vector-int2
vector-int3
vector-int4
vector-int8
vector-1ongl
vect or -1 ong2
vector-1ong3
vector-1 ong4

vect or -1 ong8

189
189
189
189
190
190
191
191
190
190
190
190
190
190

FLI type descriptor
FLI type descriptor
FLI type descriptor
FLI type descriptor
FLI type descriptor
FL 1 type descriptor
FL 1 type descriptor
FL1 type descriptor
FLI type descriptor

190
190
190
190
190
190
190
190
190

vector-short16 FLI typedescriptor 190

vect or-short 2
vector-short3
vect or - short 32
vector-short4
vect or-short8
vect or - uchar 16
vect or - uchar 2
vect or - uchar 3
vect or - uchar 32
vect or - uchar 4
vect or -uchar 8
vect or - ui nt 16
vect or-ui nt2

vector-uint3

vector-uint4

vector-uint8

FLI type descriptor
FLI type descriptor

189
189

FLI type descriptor 190

FLI type descriptor
FLI type descriptor

190
190

FLI type descriptor 189

FLI type descriptor
FLI type descriptor

189
189

FLI typedescriptor 189

FLI type descriptor

FLI type descriptor

FLI type descriptor
FL1 type descriptor
FL1 type descriptor
FLI type descriptor
FL I type descriptor

189

189

190
190
190
190
190

218

Index

vector-ul ongl FLItypedescriptor 190
vector-ul ong2 FLItypedescriptor 190
vect or-ul ong3 FLI typedescriptor 190
vector-ul ong4 FLItypedescriptor 190
vector-ul ong8 FLI typedescriptor 190
vector-ushort16 FLI typedescriptor 190
vector-ushort2 FLI typedescriptor 190
vector-ushort3 FLI typedescriptor 190
vector-ushort 32 FLI typedescriptor 190
vector-ushort4 FLI typedescriptor 190
vector-ushort8 FLI typedescriptor 190
:void FLItypedescriptor 193

:volatile FLItypedescriptor 193

W

:wehar-t FLI typedescriptor 194

wi t h-coerced-pointer macro 146

wi t h-dynami c-foreign-objects macro 148

Wi t h-dynami c-1isp-array-pointer macro 150
wi th-foreign-block macro 152
with-foreign-slots macro 153
with-foreign-string macro 154

wi th-integer-bytes macro 156

wi t h-1ocal -foreign-block macro 156
:wrapper FLI typedescriptor 194

wstr FLItypedescriptor 5.2.8: Win32 API functions that handle strings 45

219

	Foreign Language Interface User Guide and Reference Manual
	Copyrights and Trademarks
	Contents
	Preface
	1 Introduction to the FLI
	1.1 An example of interfacing to a foreign function
	1.1.1 Defining the FLI function
	1.1.2 Loading foreign code
	1.1.3 Calling foreign code

	1.2 Using the FLI to get the cursor position
	1.2.1 Defining FLI types
	1.2.2 Defining a FLI function
	1.2.3 Accessing the results

	1.3 Using the FLI to set the cursor position
	1.4 An example of dynamic memory allocation
	1.5 Summary

	2 FLI Types
	2.1 Immediate types
	2.1.1 Integral types
	2.1.2 Floating point types
	2.1.3 Complex number types
	2.1.4 Character types
	2.1.5 Boolean types
	2.1.6 Pointer types

	2.2 Aggregate types
	2.2.1 Arrays
	2.2.2 Strings
	2.2.3 Structures and unions
	2.2.4 Vector types
	2.2.4.1 Vector type names
	2.2.4.2 Vector type values
	2.2.4.3 Using a foreign pointer to a vector type
	2.2.4.4 Notes on foreign vector types

	2.3 Parameterized types
	2.4 Encapsulated types
	2.4.1 Passing Lisp objects to C
	2.4.2 An example

	2.5 The void type
	2.6 Summary

	3 FLI Pointers
	3.1 Creating and copying pointers
	3.1.1 Creating pointers
	3.1.2 Copying pointers
	3.1.3 Allocation of FLI memory

	3.2 Pointer testing functions
	3.3 Pointer dereferencing and coercing
	3.4 An example of dynamic pointer allocation
	3.5 More examples of allocation and pointer allocation
	3.5.1 Allocating an integer
	3.5.2 Allocating a pointer to a pointer to a void

	3.6 Summary

	4 Defining foreign functions and callables
	4.1 Foreign callables and foreign functions
	4.1.1 Strings and foreign callables

	4.2 Specifying a calling convention.
	4.2.1 Windows 32-bit calling conventions
	4.2.2 ARM 32-bit calling conventions
	4.2.3 ARM 64-bit calling conventions
	4.2.4 Fastcall on 32-bit x86 platforms

	5 Advanced Uses of the FLI
	5.1 Passing a string to a Windows function
	5.2 Passing and returning strings
	5.2.1 Use of Reference Arguments
	5.2.2 Passing a string
	5.2.3 Returning a string via a buffer
	5.2.4 Modifying a string in a C function
	5.2.5 Calling a C function that takes an array of strings
	5.2.6 Foreign string encodings
	5.2.7 Foreign string line terminators
	5.2.8 Win32 API functions that handle strings
	5.2.9 Mapping nil to a Null Pointer

	5.3 Lisp integers
	5.4 Defining new types
	5.5 Using DLLs within the LispWorks FLI
	5.5.1 Using C DLLs
	5.5.1.1 Testing whether a function is defined

	5.5.2 Using C++ DLLs

	5.6 Incorporating a foreign module into a LispWorks image
	5.7 Block objects in C (foreign blocks)
	5.7.1 Calling foreign code that receives a block as argument
	5.7.2 Operations on foreign blocks
	5.7.3 Scope of invocation

	5.8 Interfacing to graphics functions
	5.9 Summary

	6 Self-contained examples
	6.1 Foreign block examples
	6.2 Miscellaneous examples

	7 Function, Macro and Variable Reference
	align-of
	alloca
	allocate-dynamic-foreign-object
	allocate-foreign-block
	allocate-foreign-object
	cast-integer
	connected-module-pathname
	convert-from-foreign-string
	convert-integer-to-dynamic-foreign-object
	convert-to-dynamic-foreign-string
	convert-to-foreign-string
	copy-pointer
	decf-pointer
	define-c-enum
	define-c-struct
	define-c-typedef
	define-c-union
	define-foreign-block-callable-type
	define-foreign-block-invoker
	define-foreign-callable
	define-foreign-converter
	define-foreign-forward-reference-type
	define-foreign-funcallable
	define-foreign-function
	define-foreign-pointer
	define-foreign-type
	define-foreign-variable
	define-opaque-pointer
	dereference
	disconnect-module
	enum-symbols
	enum-symbol-value
	enum-symbol-value-pairs
	enum-values
	enum-value-symbol
	fill-foreign-object
	foreign-aref
	foreign-array-dimensions
	foreign-array-element-type
	foreign-array-pointer
	foreign-block-copy
	foreign-block-release
	foreign-function-pointer
	foreign-slot-names
	foreign-slot-offset
	foreign-slot-pointer
	foreign-slot-type
	foreign-slot-value
	foreign-symbol-defined-p
	foreign-typed-aref
	foreign-type-equal-p
	foreign-type-error
	free
	free-foreign-block
	free-foreign-object
	get-embedded-module
	get-embedded-module-data
	incf-pointer
	install-embedded-module
	install-embedded-module-delay-delete
	locale-external-formats
	make-integer-from-bytes
	make-pointer
	malloc
	module-unresolved-symbols
	null-pointer
	null-pointer-p
	pointer-address
	pointer-element-size
	pointer-element-type
	pointer-element-type-p
	pointer-eq
	pointerp
	pointer-pointer-type
	print-collected-template-info
	print-foreign-modules
	register-module
	replace-foreign-array
	replace-foreign-object
	set-locale
	set-locale-encodings
	setup-embedded-module
	size-of
	start-collecting-template-info
	use-sse2-for-ext-vector-type
	valid-foreign-type-p
	with-coerced-pointer
	with-dynamic-foreign-objects
	with-dynamic-lisp-array-pointer
	with-foreign-block
	with-foreign-slots
	with-foreign-string
	with-integer-bytes
	with-local-foreign-block

	8 Type Reference
	:bool
	:boolean
	:byte
	:c-array
	:char
	:const
	:double
	:double-complex
	:ef-mb-string
	:ef-wc-string
	:enum
	:enumeration
	:fixnum
	:float
	:float-complex
	:foreign-array
	foreign-block-pointer
	:function
	:int16
	:int32
	:int64
	:int8
	:int
	:int-boolean
	:intmax
	:intptr
	:lisp-array
	:lisp-double-float
	:lisp-float
	:lisp-simple-1d-array
	:lisp-single-float
	:long
	:long-long
	:one-of
	:pointer
	:ptr
	:ptrdiff-t
	:reference
	:reference-pass
	:reference-return
	released-foreign-block-pointer
	:short
	:signed
	:size-t
	:ssize-t
	:struct
	:time-t
	:uint16
	:uint32
	:uint64
	:uint8
	:uintmax
	:uintptr
	:union
	:unsigned
	vector-char16
	vector-char2
	vector-char3
	vector-char32
	vector-char4
	vector-char8
	vector-double2
	vector-double3
	vector-double4
	vector-double8
	vector-float16
	vector-float2
	vector-float3
	vector-float4
	vector-float8
	vector-int16
	vector-int2
	vector-int3
	vector-int4
	vector-int8
	vector-long1
	vector-long2
	vector-long3
	vector-long4
	vector-long8
	vector-short16
	vector-short2
	vector-short3
	vector-short32
	vector-short4
	vector-short8
	vector-uchar16
	vector-uchar2
	vector-uchar3
	vector-uchar32
	vector-uchar4
	vector-uchar8
	vector-uint16
	vector-uint2
	vector-uint3
	vector-uint4
	vector-uint8
	vector-ulong1
	vector-ulong2
	vector-ulong3
	vector-ulong4
	vector-ulong8
	vector-ushort16
	vector-ushort2
	vector-ushort3
	vector-ushort32
	vector-ushort4
	vector-ushort8
	:void
	:volatile
	:wchar-t
	:wrapper

	9 The Foreign Parser
	9.1 Introduction
	9.1.1 Requirements

	9.2 Loading the Foreign Parser
	9.3 Using the Foreign Parser
	9.4 Using the LispWorks Editor
	9.4.1 Processing Foreign Code with the Editor
	9.4.2 Compiling and Loading Foreign Code with the Editor

	9.5 Foreign Parser Reference
	preprocessor
	preprocessor-format-string
	preprocessor-include-path
	preprocessor-options
	process-foreign-file

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

