Editor User Guide

Version 8.1

Copyright and Trademarks

Editor User Guide (Windows version)
Version 8.1

February 2025

Copyright © 2025 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

http://www.lispworks.com

Contents

1 Introduction 7

1.1 Using the editor within LispWorks 7
1.2 About this manual 7
1.3 Viewing example files 8

2 General Concepts 9

2.1 Window layout 9

2.2 Buffer positions. points, marks and locations
2.3 Modes 10

2.4 Text handling concepts 11

2.5 Executing commands 11

2.6 Basic editing commands 12

3 Command Reference 15

3.1 Aborting commands and processes 16
3.2 Executing commands 17
3.3 Help 17

3.4 Using prefix arguments 21
3.5 File handling 21

3.6 Filename completion 31

3.7 Directory mode 31

3.8 Movement 37

3.9 Marks and regions 43

3.10 Locations 45

3.11 Deleting and killing text 46
3.12 Inserting text 49

3.13 Delete Selection 51

3.14 Undoing 51

3.15 Case conversion 51

3.16 Transposition 52

3.17 Overwriting 53

3.18 Indentation 54

3.19 Filling 56

3.20 Buffers 58

3.21 Windows 61

3.22 Pages 63

3.23 Searching and replacing 65

10

Contents

3.24 Comparison 73

3.25 Registers 74

3.26 Modes 76

3.27 Abbreviations 78
3.28 Keyboard macros 82

3.29 Echo area operations 83
3.30 Editor variables 86
3.31 Recursive editing 87

3.32 Key bindings 87

3.33 Execute mode 88

3.34 Running shell commands 93

3.35 Buffers, windows and the mouse 95
3.36 Interaction with the GUI and the IDE 96
3.37 Miscellaneous 99

3.38 Obscure commands 100

4 Editing Lisp Programs 102

4.1 Automatic entry into Lisp mode 102
4.2 Syntax coloring 102

4.3 Functions and definitions 104
4.4 Forms 114

45 Lists 116

4.6 Comments 117

4.7 Parentheses 119

4.8 Documentation 120

4.9 Evaluation and compilation 121
4.10 Code Coverage 128

4.11 Breakpoints 129

4.12 Stepper commands 130

4.13 Removing definitions 130
4.14 Definition folding 131

4.15 Remote debugging 132

5 Emulation 135

5.1 Using platform-specific editor emulation 135
5.2 Key bindings 135

5.3 Replacing the current selection 136

5.4 Emulation in Applications 136

6 Advanced Features 138

6.1 Customizing default key bindings 138
6.2 Customizing Lisp indentation 139

6.3 Programming the editor 140

6.4 Editor source code 161

Contents

7 Self-contained examples

7.1 Example commands 163
7.2 Syntax coloring example 163

Glossary 164

Index

163

1 Introduction

The LispWorks editor is built in the spirit of Emacs. As amatter of policy, the key bindings and the behavior of the
LispWorks editor are designed to be as close as possible to the standard key bindings and behavior of GNU Emacs.

For users more familiar with Microsoft Windows keys, an alternate keys and behavior model is provided. This manual
however, generally documents the Emacs model.

The LispWorks editor has the following features:

* Itisascreen editor. This meansthat text is displayed by the screenful, with a screen normally displaying the text which
is currently being edited.

* |tisareal-time editor. This means that modifications made to text are shown immediately, and any commands issued are
executed likewise.

* Anon-line help facility is provided, which allows the user quick and easy access to command and variable definitions.
Various levels of help are provided, depending on the type of information the user currently possesses.

* |tiscustomizable. The editor can be customized both for the duration of an editing session, and on a more permanent
basis.
» A range of commands are provided to facilitate the editing of Lisp programs.

» The editor isitself written in Lisp.

1.1 Using the editor within LispWorks

The LispWorks editor is fully integrated into the LispWorks programming environment. If you do not currently have an
Editor (check the windows menu), start one by choosing Tools > Editor or clicking on 2] in the podium toolbar.

To produce a menu bar on each tool in LispWorks for Windows, choose Tools > Preferences... and adjust the Window
Options configuration.

There are anumber of editor operations which are only available in Listener windows (for example, operations using the
command history). These operations are covered in the Lisp\Works IDE User Guide.

1.2 About this manual

The Editor User Guide is divided into chapters, as follows:

2 General Concepts, provides a brief overview of terms and concepts which the user should be familiar with before
progressing to the rest of the manual. The section 2.6 Basic editing commands provides a brief description of commands
necessary to edit afile from start to finish. If you are aready familiar with Emacs, you should be familiar with most of the
information contained in this chapter.

3 Command Reference, contains full details of most of the editor commands. Details of editor variables are also provided
where necessary. Not included in this chapter are commands used to facilitate the editing of Lisp programs.

4 Editing Lisp Programs, contains full details of editor commands (and variables where necessary) to allow for easier
editing of Lisp programs.

1 Introduction

5 Emulation, describes use of Microsoft Windows style key bindings rather than Emacs style.

6 Advanced Features, provides information on customizing and programming the editor. The features described in this
chapter alow permanent changes to be made to the editor.

7 Self-contained examples, enumerates the example files which are relevant to the content of this manual and are available
in the LispWorks library.

A Glossary isaso included to provide aquick and easy reference to editor terms and concepts.

Each editor command, variable and function is fully described once in arelevant section (for example, the command Save
Fileisdescribed in 3.5 File handling). It is often worthwhile reading the introductory text at the start of the section, as some
useful information is often provided there. The descriptions all follow the same layout convention which should be self-
explanatory.

Command description layouts include the name of the command, the default key binding (in Emacs editor emulation unless
stated otherwise), details of optional arguments required by the associated defining function (if any) and the mode in which
the command can be run (if not global).

1.3 Viewing example files

This manual sometimes refers to examplefilesin the LispWorks library viaaLisp form like this:

(exanple-edit-file "editor/comrands/ space-showarglist")

These examples are Lisp source filesin your LispWorks installation under | i b/ 8- 1- 0- 0/ exanpl es/ . You can simply
evaluate the given form to view the example source file.

Example files contain instructions about how to use them at the start of thefile.

The examplesfiles are in aread-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
towrite afad file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy thefile
elsawhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

2 General Concepts

There are anumber of terms used throughout this manual which the user should be familiar with. Definitions of these terms
are provided in this chapter, along with a section containing just enough information to be able to edit a document from start
to finish.

This chapter is not designed to provide precise details of commands. For these see the relevant sections in the following
chapters.

2.1 Window layout

2.1.1 Windows and panes

When the editor is called up an editor window is created and displayed (for those already familiar with Emacs running on a
tty terminal, note that in this context awindow is an object used by the window manager to display data, and not aterm used
to describe a portion of the editor display). The largest area of the editor window is taken up by an editor pane. Each window
contains a single pane and therefore the term window is used throughout this manual as being synonymous with pane, unless
more clarification is required.

Initially only one editor window is displayed. The corresponding editor paneis either blank (ready for text to be entered) or
containstext from afile to be edited. The editor window displays text using the font associated with the editor pane.

2.1.2 Files and buffers

It is not technically correct to say that awindow displays the contents of afile, rather that each window displays the contents
of abuffer. A buffer isan object that contains data from the point of view of the editor, whereas afile contains data from the
point of view of the operating system. A buffer is atemporary storage area used by the editor to hold the contents of afile
while the process of editing istaking place. When editing has finished the contents of the buffer can then be written to the
appropriate file. When the user exits from the editor, no information concerning buffers or windows is saved.

A buffer is often displayed in its own window, although it is also possible for many buffers to be associated with asingle
window, and for asingle buffer to be displayed in more than one window.

In most cases, there is one buffer for each file that is accessed, but sometimes there is more than one buffer for asinglefile.
There are also some buffers (such as the Echo Area, which is used to communicate with the user) that are not necessarily
associated with any file.

2.1.3 The mode line

At the bottom of each editor window is amode line that provides information concerning the buffer which that window is
displaying. The contents of the mode line are as follows:

e "LATIN-1", "SJIS", "MACOS-ROMAN", "UTF-8" or "UNICODE", or other encoding name, indicating the encoding of
any file associated with the buffer.

o "o or"-*EA" or "-%%-": thefirst indicates that the buffer is unchanged since it was last saved; the second that it has
been changed; and the third that it isread only.

« the name of the buffer (the name of a buffer originating from afile is usualy the same as the name of that file).

9

2 General Concepts

« the package of the current buffer written within braces.
» amajor mode (such as Fundamental or Lisp). A buffer always operates in a single major mode.

« aminor mode (such as Abbrev or Auto-Fill). If no minor mode is in operation then this element is omitted from the
mode line. An editor can operate in any number of minor modes.

 aposition indicator showing the line numbers of the topmost and bottommost lines displayed in the window, and the
total number of linesin the buffer. The editor can be changed to count characters rather than lines, and then displays
percentages rather than line numbers.

« the pathname with which the buffer is associated.
2.2 Buffer positions: points, marks and locations

2.2.1 Points

A point isaposition in a buffer where editor commands take effect. The current point is generally between the character
indicated by the cursor and the previous character (that is, it actualy lies between two characters). Many types of commands
(that is, moving, inserting, deleting) operate with respect to the current point, and indeed move that point.

Each buffer has a current point associated with it. A buffer that is not being displayed remembers where its current point is
and returns the user to that point when the buffer is redisplayed.

If the same buffer is being displayed in more than one window, there is a point associated with the buffer for each window.
These points are independent of each other.

2.2.2 Marks

The position of a point can be saved for later reference by setting a mark. Marks may either be set explicitly or as side effects
of commands. More than one mark may be associated with a single buffer and saved in what is known asamark ring. Asfor
points, the positions of marksin abuffer are remembered even if that buffer is not currently being displayed.

2.2.3 Regions

A region isthe area of text between the mark and the current point. Many editor commands affect only a specified region.

2.2.4 Locations

A location isthe position of the current point in a buffer at sometime in the past. Locations are recorded automatically by
commands that take you to a different buffer or where you might lose your place within the current buffer. They are designed
to be amore comprehensive form of the mark ring but without the interaction with the selected region.

2.3 Modes

Each buffer can be in two kinds of mode: amajor mode, such as Lisp mode, or Fundamental mode (which is the ordinary text
processing mode); and a minor mode, such as Abbrev mode or Auto-Fill mode. A buffer always has precisely one major
mode associated with it, but minor modes are optional. Any number of minor modes can be associated with a buffer.

The major modes govern how certain commands behave. For example, the concept of indentation is radically different
between Lisp mode and Fundamental mode. As another example, a Directory mode buffer (which is essentially read-only)
lists files and alows you to operate on them with simple keystrokes like E for edit and D for delete. Thefilelisting is updated
automatically to reflect any changes.

10

2 General Concepts

When afile isloaded into a new buffer, the default mode of that buffer can be determined by the file name. For example, a
buffer into which afile namethat hasa. | i sp suffix isloaded defaults to Lisp mode.

The minor modes determine whether or not certain actions take place. For example, when Auto-Fill modeison, lines are
automatically broken at the right hand margin, as the text is being typed, when the line length exceeds a pre-defined limit.
Normally the newline has to be entered manually at the end of each line.

2.4 Text handling concepts

2.4.1 Words

A word is defined as a continuous string of alphanumeric characters. These are the letters A-Z, a-z, numbers 0-9, and the
Latin-1 alphanumeric characters. In most modes, any character which is not alphanumeric is treated as a word delimiter.

2.4.2 Sentences

A sentence begins wherever a paragraph or previous sentence ends. The end of a sentence is defined as consisting of a
sentence terminating character followed by two spaces or anewline. Two spaces are required to prevent abbreviations (such
as Mr.) from being taken as the end of a sentence. Such abbreviations at the end of aline are taken as the end of a sentence.
There may aso be any number of closing delimiter characters between the sentence terminating character and the spaces or
newline.

Sentence terminating charactersinclude:

? 1

Closing delimiter characters include:

)1 =11

2.4.3 Paragraphs

A paragraph is defined as the text within two paragraph delimiters. A blank line constitutes a paragraph delimiter. The
following characters at the beginning of aline are also paragraph delimiters:

Space Tab @- ')

2.5 Executing commands

2.5.1 Modifier keys — Command, Ctrl, Alt and Meta

Editor commands are initiated by one or more key sequences. A single key sequence usually involves holding down one of
two specially defined modifier keys, while at the same time pressing another key which is usually a character key.

The two modifier keys referred to are the Control (Ct r |) key and the Meta key which isusually Al t .

When using Emacs emulation on a keyboard without an Alt key, the Escape (Esc) key can be used instead. Note that Esc
must be typed before pressing the required character key, and not held down.

When using Microsoft Windows editor emulation, the Al t key cannot be used as Meta, and Esc isthe cancel gesture, so
LispWorks provides an alternate gesture to access editor commands: Ct r | +M For example, to invoke the command Find

11

2 General Concepts

Sour ce for Dspec, type:

Ctrl+M X Find Source for Dspec

and press Ret ur n.

In addition, you can use any Emacs key binding by typing Ct r | +E followed by the Emacs key binding. Thisinvokes Emacs
Command.

To continue the search, type Ctrl +M , .

An example of asingle key sequence command is Ct r | +A which moves the current point to the start of the line. This
command is issued by holding down the Cont r ol key while at the same time pressing A.

Some key sequences may reguire more than one key sequence. For example, the key sequence to save the current buffer to a
fileisCtrl +X Ctrl +S. Another multi-key sequenceisCt r | +X Swhich saves all buffersto their relevant files. Notethat in
this case you do not pressthe Cont r ol key while pressing S.

A few commands require both the Ct r1 and Al t key to be held down while pressing the character key. Al t +Ctr | +L, used
to select the previous buffer displayed, is one such command. If theEsc or Ctr| +M key is being used in place of the Al t
key, then this key should be pressed beforethe Ct r | +L part of the key sequence.

2.5.2 Two ways to execute commands

The key sequences used to execute commands, as described in the previous section, are only one way to execute an editor
command. Asageneral rule, editor commands that are used frequently should involve as few key strokes as possible to allow
for fast editing. The key sequences described above are quick and easy shortcuts for invoking commands.

Most editor commands can also be invoked explicitly by using their full names. For example, in the previous section we met
the keystroke Ct r | +A which moves the current point to the beginning of the line. This keystroke is called a key binding and
isashortcut for executing the command Beginning of Line. To execute this command by name you must type Al t +X
followed by the full command name (Al t +X itself is only akey binding for the command Extended Command).

Even though there may seem like alot of typing to issue the extended version of acommand, it is not generally necessary to
type in the whole of a command to be executed. The Tab key can be used to complete a partially typed in extended
command. The editor extends the command name as far as possible when Tab isused, and if the user is not sure of the rest of
the command name, then pressing Tab again provides alist of possible completions. The command can then be selected
from thislist.

The most commonly used editor commands have a default binding associated with them.

2.5.3 Prefix arguments

An editor command can be supplied with an integer argument p which may alter the effect of that command. In most cases it
means that the command is repeated p times. This argument is known as a prefix argument asit is supplied before the
command to which it isto be applied. Prefix arguments have no effect on some commands.

See 3.4 Using prefix arguments for information about using prefix arguments.

2.6 Basic editing commands

This section contains just enough information to allow you to load afile into the editor, edit that file as required, and then
savethat file. It is designed to give you enough information to get by and no more.

Only the default bindings are provided. The commands introduced are grouped together as they are in the more detailed

12

2 General Concepts

command references and under the same headings (except for 2.6.7 Killing and Yanking). For further information on the
commands described below and other related commands, see the relevant sectionsin 3 Command Reference.

2.6.1 Aborting commands and processes

See 3.1 Aborting commands and processes.

crl+G Abort the current command which may either be running or just partially typed in. Use Esc in
Microsoft Windows editor emulation.

2.6.2 File handling
See 3.5 File handling.

Cirl+X Cirl+Ffile Load file into a buffer ready for editing. If the name of a non-existent fileis given, then an empty
buffer is created in to which text can be inserted. Only when a save is done will the file be
created.

Grl+X Crl +S Save the contents of the current buffer to the associated file. If thereis no associated file, oneis
created with the same name as the buffer.

2.6.3 Inserting text

See 3.12 Inserting text for details of various commands which insert text.

Text which istyped in at the keyboard is automatically inserted to the |eft of the cursor.

To insert anewline press Ret ur n.

2.6.4 Movement

See 3.8 M ovement.

crl+F Move the cursor forward one character.
Ctrl+B Move the cursor backward one character.
Ctrl+N Move the cursor down oneline.

Ctrl+P Move the cursor up oneline.

The above commands can a so be executed using the arrow keys.

Ctrl+A Move the cursor to the beginning of theline.
Crl+E Move the cursor to the end of theline.
Crl+Vv Scroll one screen forward.

Alt+V Scroll one screen backward.

Al't +Shi ft +<

Move to the beginning of the buffer.
At +Shift+>

Move to the end of the buffer.

13

2 General Concepts

2.6.5 Deleting and killing text
See 3.11 Deleting and Killing text.

Del et e Delete the character to the |eft of the cursor.
crl+D Delete the current character.
arl+K Kill text from the cursor to the end of the line. To delete awhole line (that is, text and newline),

type Ct r | +K twice at the start of theline.

2.6.6 Undoing
See 3.14 Undoing.

Ctrl+Shift+_ Undo the previous command. If Ct r| +Shi f t +_ istyped repeatedly, previously executed
commands are undone in a"last executed, first undone" order.

2.6.7 Killing and Yanking

The commands given below are used to copy areas of text and insert them at some other point in the buffer. Note that thereis
no corresponding " Cut and paste" section in the command references, so direct cross references have been included with each
command.

When cutting and pasting, the first thing to do is to copy the region of text to be moved. Thisis done by taking the cursor to
the beginning of the piece of text to be copied and pressing Ct r | +Space to set amark, and then taking the cursor to the end
of the text and pressing Ct r | +W Thiskills the region between the current point and the mark but keeps a copy of the killed
text. Thiscopy can then be inserted anywhere in the buffer by putting the cursor at the required position and then pressing
Ct rl +Y to insert the copied text.

If the original text is to be copied but not killed, use the command Al t +W instead of Ct r | +W This copies the text ready for
insertion, but does not deleteit.

Ctrl +Space Set amark for aregion. See 3.9 Marksand regions.

Crl+w Kill the region between the mark and current point, and save a copy of that region. See 3.11
Deleting and killing text.

Al t +W Copy the region between the mark and the current point. See 3.11 Deleting and killing text.

Crl+Y Insert (yank) a copied region before the current point. See 3.12 Inserting text.

2.6.8 Help

See 3.3 Help.

Ctrl+H Astring List symbols whose names contain string in a Symbol Browser tool.

Ctrl+H D command Describe command, where command is the full command name.

Crl+H Kkey Describe the command bound to key.

14

3 Command Reference

This chapter contains full details of most of the editor commands. Details of related editor variables have also been included
alongside commands, where appropriate. Not included in this chapter, are commands used to facilitate the editing of Lisp
programs. See 4 Editing Lisp Programs.

Commands are grouped according to functionality as follows:

» 3.1 Aborting commands and processes

» 3.2 Executing commands

. 33Help

e 3.4 Using prefix arguments

» 3.5Filehandling

» 3.6 Filename completion

» 3.7 Directory mode

+ 3.8 Movement

» 3.9 Marksand regions

e 3.10 Locations

» 3.11 Deleting and killing text

» 3.12 Inserting text

e 3.13 Delete Selection

» 3.14 Undoing

e 3.15 Case conversion

» 3.16 Transposition

« 3.17 Overwriting

« 3.18 Indentation

» 3.19Filling

» 3.20 Buffers

* 3.21 Windows
» 3.22 Pages

» 3.23 Searching and replacing

» 3.24 Comparison

» 3.25 Registers

15

3 Command Reference

3.26 Modes

e 3.27 Abbreviations

» 3.28 Keyboard macros

» 3.29 Echo area operations

« 3.30 Editor variables

» 3.31 Recursive editing

» 3.32 Key bindings

* 3.34 Running shell commands

« 3.35 Buffers, windows and the mouse

» 3.36 Interaction with the GUI and the IDE

e 3.37 Miscellaneous

» 3.38 Obscure commands

3.1 Aborting commands and processes

Key Sequence: Ctrl +G

Abortsthe current command. Ct r | +G(or Esc in Microsoft Windows editor emulation) can either be used to abandon a
command which has been partialy typed in, or to abort the command which is currently running.

Note that, unlike most of the keys described in this manual, this cannot be changed viaedi t or : bi nd- key. Instead, use
edi tor:set-interrupt-keys if youwishto changethis.

Key Sequence: Ctrl +Br eak
Chooses a process that is useful to break, and breaksit. The processto break is chosen as follows:

1. If the break gestureis sent to any CAPI interface that is waiting for events, it does "Interface break", as described
below.

2. Otherwise it checks for a busy processes that is essential for LispWorks to work correctly, or that interacts with the
user (normally that means that some CAPI interface usesit), or that isflagged as wanting interrupts (currently that
means a REPL). If it finds such abusy process, it breaksit.

3. Otherwise, if the LispWorks IDE is running, activate or start the Process Browser. Note that the Process Browser
tool, documented in the LispWorks IDE User Guide can be used to break any other process.

4. Otherwise, if thereisabusy process break it.

5. Otherwise, just break the current process.

"Interface break” depends on the interface. For an interface that has another process, notably the Listener with its
REPL, it breaks that other process. For most interfaces, in the LispWorks IDE it starts the Process Browser,
otherwise just it breaks the interface's process.

16

3 Command Reference

3.2 Executing commands

Some commands (usually those used most frequently) are bound to key combinations or key sequences, which means that
fewer keystrokes are necessary to execute these commands. Other commands must be invoked explicitly, using Extended
Command.

It is also possible to execute shell commands from within the editor. See 3.34 Running shell commands.

Extended Command Editor Command
Key sequence: Al t +X

Allows the user to type in acommand name explicitly. Any editor command can be invoked in this way, and thisisthe
usual method of invoking acommand that is not bound to any key sequence. Any prefix argument is passed to the
command that is invoked.

Itis not generally necessary to type in the whole of a command to be executed. Completion (using Tab) can be used
after thefirst part of the command has been typed.

3.3 Help

The editor provides a number of on-line help facilities, covering arange of areas.

There is one main help command, accessed by Help (Ct r | +H), with many options to give you awide range of help on editor
commands, variables and functions.

There are also further help commands which provide information on Lisp symbols (see 4.8 Documentation).

3.3.1 The help command

Help Editor Command

Options: See below
Key sequence: Ct r| +Hoption

Provides on-line help. Depending on what information the user has and the type of information required, one of the
following options should be selected after invoking the Hel p command. In most cases aHel p command plus option can
also be invoked by an extended editor command.

A brief summary of the help optionsis given directly below, with more detailed information following.

? Display alist of help options.

gorn Quit help.

a string Display alist of symbols whose names match string, in a Symbol Browser tool.
b Display alist of key bindings and associated commands.

c key Display the command to which key is bound.

d command Describe the editor command.

Ct r |l +D command Bring up the on-line version of this manual for command.

g object Invoke the appropriate describe object command.

k key Describe the command to which key is bound.

17

3 Command Reference

Ctrl +Kkey Bring up the on-line version of this manual for key.

I describe the last 60 keys typed.

v variable Describe variable and show its current value.
Ctrl +Vvariable Bring up the on-line version of this manual for variable.
w command Display the key sequence to which command is bound.
Apropos Command Editor Command

Arguments: string
Key sequence: None

Displays alist of editor commands, variables, and attributes whose names contain string, in a Help window.

Editor command, variable and attribute names tend to follow patterns which becomes apparent as you look through this
manual. For example, commands which perform operations on files tend to contain the string f i | e, that is, Find File,
Save File, Print File and so forth.

Use this form of help when you know what you would like to do, but do not know a specific command to do it.

What Command Editor Command

Arguments: key
Key sequence: Ctrl +H Ckey

Displays the command to which key is bound. For a more detailed description of key use the command Describe Key.
Use this form of help when you know a default binding but want to know the command name.

Note: thiscommand is also available via the menu command Help > Editing > Key to Command.

Describe Command Editor Command

Arguments. command
Key sequence: Ctrl +H D command

Describes the editor command command. Full documentation of that command is printed in a Help window.

Use this form of help when you know a command name and require full details of that command.

Document Command Editor Command

Arguments: command
Key sequence: Ctrl +H Ctr | +Dcommand

Brings up the on-line version of this manual at the entry for command.

The documentation in the on-line manual differs from the editor on-line help (as produced by Describe Command), but
provides similar information. If you are used to the layout and definitions provided in this manual then use this help
command instead of Ct r | +H D.

Generic Describe Editor Command

Arguments: object
Key sequence: Ctrl +H Gobject

Describes object, where object may take the value command, key, attribute or variable.

18

3 Command Reference

If object is command, key or variable then the command Describe Command, Describe Key or Describe Editor
Variableisinvoked respectively.

Thereis no corresponding describe command if the object is attribute. Attributes are things such as word delimiters,
Lisp syntax and parse field separators. If you are not sure of the attributes documented remember that you can press Tab
to display acompletion list.

Describe Key Editor Command

Arguments: key
Key sequence: Ctrl +H K key

Describes the command to which key is bound. Full documentation of that command is printed in a Help window.

Use this form of help when you know a default binding and require the command name plus full details of that
command.

Document Key Editor Command

Arguments: key
Key sequence: Ctrl +H Ctrl +K key

Brings up the on-line version of this manual at the entry for key.

The documentation in the on-line manual differs dightly from the editor on-line help but usually provides you with the
same amount of information. If you are used to the layout and definitions provided in this manual then use this help
command instead of Describe Key.

What Lossage Editor Command

Arguments. None
Key sequence: Ctrl +H L

Displays the last 60 keys typed.

Describe Editor Variable Editor Command

Arguments: variable
Key sequence: Ctrl +H Vvariable

Describes variable and printsits current value in a Help window.
Use this form of help when you know a variable name and require a description of that variable and/or its current value.

Document Variable Editor Command

Arguments: variable
Key sequence: Ctrl +H Ctrl +Vvariable

Brings up the on-line version of this manual at the entry for variable.

The documentation in the on-line manual differs dightly from the editor on-line help but usually provides you with the
same amount of information. If you are used to the layout and definitions provided in this manual then use this help
command instead of Describe Editor Variable.

Where Is Editor Command

Arguments. command
Key sequence: Ctrl +H Wcommand

19

3 Command Reference

Displays the key sequence to which command is bound.

Use thisform of help if you know a command name and wish to find the bindings for that command. If no binding exists
then a message to this effect is returned.

Note: thiscommand is also available viathe menu command Help > Editing > Command to Key.

Describe Bindings Editor Command

Arguments: None
Key sequence: Ctrl +H B

Displays alist of key bindings and associated commands in a Help window. First the minor and major mode bindings for
the current buffer are printed, then the global bindings.

3.3.2 Other help commands on UNIX and macOS

Manual Entry Editor Command

Arguments: unix-command
Key sequence: |
Mode: Manual Entry

This command is not implemented on Microsoft Windows.

Displays the UNIX manual page for unix-command. The UNIX utility man isinvoked and the manual pageis displayed
in an Editor window.

The buffer isin Manual Entry mode and you can navigate using keys p, n, s and so on - use Describe Bindingsto see all
the Manual Entry mode keys.

With no prefix argument, the same buffer is used each time. With a prefix argument, a new buffer is created for each
manual page accessed.

See also: 3.26.1 Major modes.

Remote Manual Entry Editor Command

Arguments. machine-name unix-command
Key sequence: r
Mode: Manual Entry

This command is not implemented on Microsoft Windows.
The command Renot e Manual Ent ry islike Manual Entry, but runs on another computer using r sh.

Remove Nroff Backspaces Editor Command

Arguments: None
Key sequence: None

This command is not implemented on Microsoft Windows.

The command Remove Nrof f Backspaces removes from the current buffer markersthat are used by nr of f to go
backspace.

Note: Manual Entry command removes nr of f backspaces automatically.

20

3 Command Reference

3.4 Using prefix arguments

Editor Commands can be supplied with an integer argument which, in many cases, indicates how many times a command is
to be executed. This argument is known as a prefix argument as it is supplied before the command to which it is to be applied.

A prefix argument applied to some commands has a special meaning. Documentation to this effect is provided with the
command definitions where appropriate in this manual. In most other cases the prefix argument repeats the command a
certain number of times, or has no effect.

A prefix argument can be supplied to a command by first using the command Set Prefix Argument (Ct r | +U) followed by an
integer. Negative prefix arguments are allowed. A prefix argument between 0 and 9 can aso be supplied using Al t +digit.

Set Prefix Argument Editor Command

Arguments: integer
Key sequence: Ct rl +Uinteger

Provides a prefix argument which, for many commands, indicates the command isto be invoked integer times. The
required integer should be input and the command to which it applies invoked without an intervening carriage return.

If no integer is given, the prefix argument defaultsto the value of pr efi x- ar gunent - def aul t .

If Set Prefix Argument isinvoked more than once before a command, the prefix arguments associated with each
invocation are multiplied together and the command to which the prefix arguments are to be applied is repeated this
number of times. For example, if youtypedinCtrl +U Cirl +U 2 before acommand, then that command would be
repeated 8 times.

prefix-argument-default Editor Variable
Default value: 4

The default value for the prefix argument if no integer is provided for Set Prefix Argument.

Argument Digit Editor Command
Key sequence: Al t +<0-9>

Provides a prefix argument in asimilar fashion to Set Prefix Argument, except that only integers from 0 to 9 can be
used (unless the key bindings are changed).

Negative Argument Editor Command

Arguments. None
Key sequence: -

Negates the current prefix argument. If thereis currently no prefix argument then it is set to -1.

Thereisrarely any need for explicit use of this command. Negative prefix arguments can be entered directly with Set
Prefix Argument by typing a- before the integer.

3.5 File handling

This section contains details of commands used for file handling.

The first section provides details on commands used to copy the contents of afile into a buffer for editing, while the second
deals with copying the contents of buffersto files.

You may at some point have seen file names either enclosed in # characters or followed by a~ character. These filesare

21

3 Command Reference

created by the editor as backups for the file named. The third section deals with periodic backups (producing file names
enclosed in #) and the fourth with backups on file saving (producing files followed by ~).

There are many file handling commands which cannot be pigeon-holed so neatly and these are found in the section 3.5.6
Miscellaneous file oper ations. Commands use to print, insert, delete and rename files are covered here, along with many
others.

3.5.1 Finding files

Find File Editor Command

Arguments: pathname
Key sequence: None

editor:find-file-command p &optional pathname => buffer

Finds a new buffer with the same name as pathname (where pathname is the name of the file to be found, including its
directory relative to the current directory), creating it if necessary, and inserts the contents of the file into the buffer. The
contents of the buffer are displayed in an editor pane and may then be edited.

Thefileisinitially read in the external format (encoding) given by the editor variablei nput - f or mat - def aul t . If the
value of thisisni | , cl : open chooses the external format to use. The external format is remembered for subsequent
reading and writing of the buffer, and its name is displayed in the mode line.

If thefileis already being visited anew buffer is not created, but the buffer already containing the contents of that fileis
displayed instead.

If afile with the specified name does not exist, an empty buffer with that file nameis created for editing purposes, but
the new fileis not created until the appropriate save file command isissued.

If thereis no prefix argument, a new Editor window is created for the file. With any prefix argument, the fileis shown in
the current window.

Another version of thiscommand is Wfind File which isusually used for finding files.

Wifind File Editor Command

Arguments: pathname
Key sequence: Ctrl +X Ctrl +F pathname

editor:wfind-fil e-conmand p &optional pathname => buffer

CallsFind File with a prefix argument (that is, the new file is opened in the existing window).

Visit File Editor Command

Arguments. pathname
Key sequence: None

editor:visit-file-command p &optional pathname buffer

Does the same as Find Alternate File, and then sets the buffer to be writable.

Find Alternate File Editor Command

Arguments. pathname
Key sequence: Ctrl +X Ctrl +V pathname

editor:find-alternate-fil e-comand p &optional pathname buffer

22

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

3 Command Reference

Does the same as Find File with a prefix argument, but kills the current buffer and replaces it with the newly created
buffer containing the file requested. If the contents of the buffer to be killed have been modified, the user is asked if the
changes are to be saved to file.

The argument buffer isthe buffer in which the contents of the file are to be displayed. buffer defaults to the current
buffer.

The prefix argument isignored.

3.5.2 Saving files

Save File Editor Command

Arguments. None
Key sequence: Ctrl +X Cirl +S

editor:save-file-comand p &optional buffer

Saves the contents of the current buffer to the associated file. If there is no associated file, oneis created with the same
name as the buffer, and written in the same encoding as specified by the editor variable out put - f or mat - def aul t, or
as defaulted by open if thisisni | .

The argument buffer isthe buffer to be saved in its associated file. The default isthe current buffer.

Save All Files Editor Command

Arguments. None
Key sequence: Ctrl +X S

Without a prefix argument, a Select Buffers To Save: dialog is displayed asking whether each modified buffer isto be
saved. If abuffer has no associated fileit isignored, eveniif it is modified. The selected buffers are saved.

With anon-nil prefix argument, no such dialog is displayed and all buffers that need saving are saved. You can also
prevent the Select Buffers To Save: dialog from being displayed by setting the value of the editor variable
save-all-files-confirm

save-all-files-confirm Editor Variable
Default value: t

When the value istrue, Save All Files prompts for confirmation before writing the modified buffers, when used without
a prefix argument.

Write File Editor Command

Arguments. pathname
Key sequence: Ctrl +X Ct rl +Wpathname

editor:wite-file-command p &opti onal pathname buffer

Writes the contents of the current buffer to the file defined by pathname. If the file aready exists, it is overwritten. If the
file does not exist, it is created. The buffer then becomes associated with the new file.

The argument buffer isthe name of the buffer whose contents are to be written. The default is the current buffer.

Write Region Editor Command

Arguments. pathname
Key sequence: None

23

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

3 Command Reference

editor:wite-regi on-command p &opti onal pathname

Writes the region between the mark and the current point to the file defined by pathname. If the file already exists, it is
overwritten. If the file does not exist, it is created.
Append to File Editor Command

Arguments: pathname
Key sequence: None

Appends the region between the mark and the current point to the file defined by pathname. If the file does not exist, itis
created.
Backup File Editor Command

Arguments. pathname
Key sequence: None

Writes the contents of the current buffer to the file defined by pathname. If the file aready exists, it is overwritten. If it
does not exist, it is created.

In contrast with Write File, no change is made concerning the file associated with the current buffer as this command is
only intended to be used to write the contents of the current buffer to a backup file.
Save All Files and EXxit Editor Command

Arguments. None
Key sequence: Ctrl +X Cirl +C

A Select Buffers To Save: dialog is displayed asking whether each modified buffer isto be saved. If abuffer has no
associated fileit isignored, even if it is modified (this operates just like Save All Files). When all the required buffers
have been saved LispWorks exits, prompting for confirmation first.

add-newline-at-eof-on-writing-file Editor Variable

Default value: : ask- user

Controls whether the commands Save File and Write File add a newline at the end of thefileif thelast lineis non-
empty.

If the value of thisvariableist then the commands add a newline and tell the user.
If thevalueisni | the commands never add a newline.

If thevalueis: ask- user, the commands ask whether to add a newline.

3.5.3 Unicode and other file encodings

The editor supports the entire Unicode range, and provided that the system has suitable fonts it should be able to display all
the characters correctly. Normally you should not be able to have a character object corresponding to a surrogate code point
(these codes are the exclusive range (#xd800, #xdf ff)). If such an object isinserted, the editor displays its hexadecimal
vaue.

An editor buffer ideally should have an appropriate external format (or encoding) set before you writeit to afile. Otherwise
an external format specified in the value of the editor variable out put - f or mat - def aul t isused. If the value of

out put - f or mat - def aul t isnot an external format specifier, then the external format is chosen similarly to the way

cl : open doesit. By default this chosen external format will be the Windows code page on Microsoft Windows, and Latin-1
on other platforms.

24

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

3 Command Reference

When using the Editor tool, use Set External Format to set interactively the external format for the current buffer, or set
Preferences... > Environment > File Encodings > Output (which in turn sets the editor variable out put - f or mat - def aul t)
to provide a global default value. You can also use Find File With External Format to specify the external format before
reading afile.

In situations where you want to open afilein a 16-bit encoding but the file is not actually encoded properly (for exampleitis
actually abinary containing some strings encoded in: ut f - 16), use one of the: ut f - 16 or : bnp external formats with the
parameter : use-r epl acenent t, for example:

(:utf-16 :use-replacenment t)

These external formats will replace any input that causes errors by the replacement character (code point #xf f f d), and
should successfully read correctly encoded : ut f - 16 strings including supplementary characters.

If you need to edit afile that is not properly encoded, the only external format that can do thisis: | ati n- 1. To insert amulti
-byte character, you will haveto insert the: | at i n- 1 characters matching the individual bytesin the right order.

See 26.7 External Formatsto trandate Lisp characters from/to external encodings in the LispWorks® User Guide and
Reference Manual for a description of external format specifications.

Compatibility Note: In LispWorks 6.1 and earlier versions, : uni code isthe best choice of externa format for opening an
incorrectly-encoded file. However, in LispWorks 7.0 and later versions: uni code mapsto : ut f - 16 which is quite likely to
give an error trying to read a binary file, unless you supply : use-r epl acement t asdescribed above. The error would
occur when it sees a 16-hit value which is a surrogate code point.

3.5.3.1 Controlling the external format

Find File With External Format Editor Command

Arguments: None
Key sequence: None

Thecommand Find File Wth External Format promptsfor an external format, and then opensthefile asasif
by Wfind File, with the supplied external format.

This external format is also used when subsequently saving the file.

Set External Format Editor Command

Arguments: buffer
Key sequence: None

Prompts for an external format specification, providing a default which is the buffer's current external format if set, or the
value of out put - f or mat - def aul t . Setsthe buffer's external format, so that thisis used for subsequent file writing
and reading.

If anon-nil prefix argument is supplied, the buffer's external format is set to the value of out put - f or mat - def aul t
without prompting.

input-format-default Editor Variable
Default value: ni |

The default external format used by Find File, Wfind File and Visit File for reading files into buffers.

If the buffer already has an external format (either it has previously been read from afile, or Set External Format has
been used to specify an external format) theni nput - f or mat - def aul t isignored. If thevalueisni | and the buffer
does not have an external format, cl : open chooses the external format to use.

25

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm

3 Command Reference

The value should beni | or an external format specification. See 26.7 External Formats to tranglate Lisp characters
from/to external encodings in the LispWorks® User Guide and Reference Manual for a description of these and of how
cl : open chooses an external format.

If you have specified an input encoding viathe Editor tool's Preferences dialog, theni nput - f or mat - def aul t is
initialized to that value on startup.

output-format-default Editor Variable
Default value: ni |
The default external format used for writing buffersto files.

If the buffer already has an external format (either it has been read from afile, or Set External Format has been used to
specify an external format) then out put - f or mat - def aul t isignored. If thevalueisni | and the buffer does not have
an external format, cl : open chooses the external format to use.

The value should be ni | or an external format specification. See 26.7 External Formats to trandlate Lisp characters
from/to external encodingsin the LispWorks® User Guide and Reference Manual for a description of these and of how
cl : open chooses an external format.

If you have specified an output encoding viathe Editor tool's Preferences dialog, then out put - f or mat - def aul t is
initialized to that value on startup.

The default value of out put - f or mat - def aul t isni | .

3.5.3.2 Unwritable characters

If your buffer contains a character char which cannot be encoded in the buffer's external format (or the defaulted external
format) then attempts to save the buffer will signal an error giving the character name, its offset in the buffer and explaining
that char is unwritable in the external format.

In particular if your buffer containsacl : ext ended- char char then Latin-1 and other encodings which support only
cl : base- char are not appropriate.

There are two ways to resolve this:
» Set the externa format to one which includes char, or:

» Delete char from the buffer before saving. The commands Find Unwritable Character and List Unwritable
Characterswill help you to identify the character(s) that cannot be written.

You may want afile which is Unicode UTF-16 encoded (external format : uni code), UTF-8 encoding (: ut f- 8) or a
language-specific encoding such as: shift-jis or: gbk. Or you may want aLatin-1 encoded file, in which case you could
supply : | ati n- 1-saf e.

Find Unwritable Character Editor Command

Arguments. None
Key sequence: None

Finds the next occurrence of a character in the current buffer that cannot be written using the buffer external format. The
prefix argument is ignored.

List Unwritable Characters Editor Command

Arguments: None
Key sequence: None

26

http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_extend.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm

3 Command Reference

Lists the charactersin the current buffer that cannot be written with the buffer external format. The prefix argument is
ignored.
Find Non-Base-Char Editor Command

Arguments: None
Key sequence: None

The command Fi nd Non- Base- Char findsthe next character in the current buffer that isnot acl : base- char,
starting from the current point.

3.5.4 Auto-saving files

The auto-save feature allows for periodic backups of the file associated with the current buffer. These backups are only made
if auto-saveis switched on.

Thisfeatureisuseful if the LispWorks editor iskilled in some way (for example, in the case of a system crash or accidental
killing of the editor process) before afileis explicitly saved. If automatic backups are being made, the state of afile when it
was last auto-saved can subsequently be recovered.

By default, automatic backups are made both after a predefined number of key strokes, and also after a predefined amount of
time has elapsed.

By default, auto-saved files are in the same directory as the original file, with the name of the auto-save file (or "checkpoint
file") being the name of the original file enclosed within # characters.

Toggle Auto Save Editor Command

Arguments: None
Key sequence: None

Switches auto-save onif it is currently off, and off if it is currently on.

With a positive prefix argument, auto-save is switched on. With a negative or zero prefix argument, auto-save is switched
off. Using prefix arguments with Toggl e Aut o Save disregards the current state of auto-save.

Auto Save Toggl e isasynonymfor Toggl e Auto Save.

auto-saveisinitially on or off in a new buffer according to the value of the editor variable def aul t - aut o- save- on.

default-auto-save-on Editor Variable
Default value: t

The default auto-save state of new buffers.

auto-save-filename-pattern Editor Variable
Default value: " ~A#~A#"

Thisisaf or mat control string used to make the filename of the checkpoint file. f or mat is called with two arguments,
the first being the directory namestring and the second being the file namestring of the default buffer pathname.

The default value causes the auto-save file to be created in the same directory as the file for which it is a backup, and
with the name surrounded by # characters.

auto-save-key-count-threshold Editor Variable
Default value: 256

27

http://www.lispworks.com/documentation/HyperSpec/Body/t_base_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

3 Command Reference

Specifies the number of destructive/modifying keystrokes that automatically trigger an auto-save of a buffer. If the value
isni |, thisfeatureisturned off.

auto-save-checkpoint-frequency Editor Variable
Default value: 300

Specifies the time interval in seconds after which all modified buffers which are in "Save" mode are auto-saved. If the
valueisni | , zero or negative, thisfeatureis turned off.

auto-save-cleanup-checkpoints Editor Variable
Default value: t .

This variable controls whether an auto-save function will cleanup by deleting the checkpoint file for a buffer after it is
saved. If the value istrue then this cleanup will occur.

3.5.5 Backing-up files on saving

When afileis explicitly saved in the editor, a backup is automatically made by writing the old contents of the file to a backup
before saving the new version of the file. The backup file appearsin the same directory asthe original file. By default its
name is the same as the original file followed by a~ character.

backups-wanted Editor Variable
Default value: t

Controls whether to make a backup copy of afilethefirst timeit is modified. If thevalueist, abackupsisautomatically
made on first saving. If thevalueisni |, no backup is made.

backup-filename-suffix Editor Variable
Default value: #\ ~

This variable contains the character used as a suffix for backup files. By default, thisisthetilde (~) character.
backup-filename-pattern Editor Variable
Default value: " ~A~A~A"

This control string is used with the Common Lisp f or mat function to create the filename of the backup file. f or nat is
called with three arguments, the first being the directory name-string and the second being the file name-string of the
pathname associated with the buffer. The third is the value of the editor variable backup-filename-suffix.

The backup file is created in the same directory as the file for which it is a backup, and it has the same name, followed
by the backup-filename-suffix.

Note that the backup-suffix can be changed functionally as well as by interactive means. For example, the following
code changes the suffix to the @character:

(setf (editor:variable-value "editor:backup-filenanme-suffix
ccurrent nil) #\ @

3.5.6 Miscellaneous file operations

28

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

3 Command Reference

Print File Editor Command

Arguments: file
Key sequence: None

Printsfile, using capi : print-fil e. Seethe CAPI User Guide and Reference Manual for details of this function.

Revert Buffer Editor Command

Arguments: None
Key sequence: None

If the current buffer is associated with afile, its contents revert to the state when it was last saved. If the buffer is not
associated with afile, it is not possible for a previous state to be recovered.

If auto-save is on for the current buffer, the version of the file that is recovered is either that derived by means of an
automatic save or by means of an explicit save, whichever isthe most recent. If auto-saveis off, the buffer revertsto its
state when last explicitly saved.

If the buffer has been modified and the value of the variabler evert - buf f er - confi r mist then Revert Buffer asks
for confirmation before reverting to a previous state.

Any prefix argument forcesRevert Buf f er to usethe last explicitly saved version.

Revert Buffer With External Format Editor Command

Arguments: None.
Key sequence: None.

Sets the external format of the current buffer and then revert it to the state when it was last saved. Thiscommand is

equivalent to doing Set External Format followed by Revert Buffer, but it checks if the buffer has been modified and
that the file exists before setting the external format.

The prefix is used the same way asin Revert Buffer.

revert-buffer-confirm Editor Variable
Default value: t

When the command Revert Buffer isinvoked, if the value of thisvariableist and the buffer has been modified then
confirmation is requested before the revert operation is performed. If itsvalueisni | , no confirmation is asked for.

Process File Options Editor Command

Arguments: None
Key sequence: None

The attribute line at the top of thefile is reprocessed, asif the file had just been read from disk. If no major modeis
specified in the attribute line, the type of the file is used to determine the major mode. See 3.26 M odes.

Insert File Editor Command

Arguments. pathname
Key sequence: Ctrl +X | pathname

editor:insert-file-command p &optional pathname buffer
Inserts the file defined by pathname into the current buffer at the current point.

The argument buffer isthe buffer in which thefileisto be inserted.

29

3 Command Reference

Delete File Editor Command

Arguments: pathname
Key sequence: None

Deletes the file defined by pathname. The user is asked for confirmation before the fileis deleted.

Delete File and Kill Buffer Editor Command

Arguments: buffer
Key sequence: None

editor:delete-file-and-kill-buffer-comand p &optional buffer
After confirmation from the user, this deletes the file associated with buffer and then kills the buffer.

Rename File Editor Command

Arguments: file new-file-name
Key sequence: None

Changes the name of file to new-file-name.

If you are currently editing the file to be renamed, the buffer remains unaltered, retaining the name associated with the

old file even after renaming has taken place. If you then save the current buffer, it is saved to a file with the name of the
buffer, that is, to afile with the old name.

Make Directory Editor Command

Arguments: None
Key sequence: None

Prompts the user for a directory name and makesit in the filesystem.
The prefix argument isignored.

List Directory Editor Command

Arguments: None
Key sequence: Ctrl +X D

Thecommand Li st Di rect ory prompts for adirectory or wild filename and finds or creates a buffer which listsfiles
and allows you to operate on them easily.

See 3.7 Directory mode for detailed information about Directory mode.

Save Buffer Pathname Editor Command

Arguments: None
Key sequence: None

Pushes the namestring of the pathname of the current buffer onto the kill ring. This namestring can then be inserted
el sewhere by commands which access the kill ring, described in 3.12 I nserting text.

30

3 Command Reference

3.6 Filename completion

Expand File Name Editor Command

Arguments: None
Key sequence: Al t +Tab

Key sequence: Tab
Mode: Shell

The command Expand Fi |l e Nane expands (completes) the filename at the current point.

The system looks backwards from the current point until it finds a space or other character that is unlikely to bein a
filename. The text from this character to the current point is the partial filename to compl ete.

Invoking Expand Fi |l e Name twicein succession offersalist of possible completions.

See also: Expand File Name With Space.

Expand File Name With Space Editor Command

Arguments. None
Key sequence: None

The command Expand File Name Wth Space islike Expand File Name, but allows spacesin the filename it tries
to complete.

See also: Expand File Name.

3.7 Directory mode

A buffer in Directory mode presents alist of files, and allows you to easily edit any of them, copy or move some of them to
another directory, or delete some of them. It also makes it easy to keep arecord of which files you already edited.

You open a Directory mode buffer by invoking one of:

» Find File or Wfind File with adirectory path.

* Find File or Wfind File with awild filename (that is, the name contains the character *).

e List Directory.
The editor opens a buffer in Directory mode, listing all the matching files.

Note: If you are opening adirectory path (without filename) and thereis already a buffer opened with this directory, it finds
this buffer, rather than creating another one. You can prevent this by first renaming the existing buffer. Opening awild path
with the Find File command always creates a new buffer.

A Directory mode buffer can be saved to afile, and because it contains the mode in its attribute line, when you re-open the
fileit will open in Directory mode. Thusit can be used as arecord of what you have done. For example, if you need to visit
al thefilesin some directory and the task will span multiple sessions, you can edit the directory and visit the files from the
Directory mode buffer. You periodically save this buffer to afile. Then after quitting your session and restarting you can open
the file and have arecord of which files you already visited. For this kind of task, Directory mode is probably the simplest
method.

The operations that you can do in Directory mode include:

* Editing afile (automatically mark it as edited).

31

3 Command Reference

Marking/unmarking afile.

Toggle the edited marking.

Copy or al marked files to another directory.

Delete al marked files.

Rename the file on the current line.

Make another buffer in Directory mode with some of the files in the current buffer.

3.7.1 Directory mode buffer display

Thefirst 2 lines of a Directory mode buffer are the "header", including the attribute line. The following lines each represent
onefile. Theline starts with spaces for optional marks, followed by the file size in bytes (decimal), followed by the name of
thefile.

Each of the optional marks in the beginning of alineis either Space for "off", or a specific character for "on" as shownin
Meaning of "on" charactersat start of linesin Directory mode.

Meaning of "on" characters at start of lines in Directory mode

Offset Character Meaning
+ Edited
* Marked
D Delete

The remainder of this section contains details of the Directory mode commands.

3.7.2 Directory mode commands

In general the buffer in Directory mode is read-only, and can be modified only by the commands below. Commands that do
not modify the text can be used asin other buffers. You should not edit the buffer in other ways, because the editor expects a
specific structure of the buffer. Commands that just change the contents of the buffer without affecting the file system can be
undone as usual. Commands that affect the file system clear the undo information, so it is not possible to undo these.
Directory Mode Next Line Editor Command

Arguments. None
Key sequence: Space, N, Ct r | +Nor Down

Thecommand Di rect ory Mbde Next Li ne movesto the next linein the buffer, with the point on the filename.

Directory Mode Previous Line Editor Command

Arguments: None
Key sequence: P, Ctrl +Por Up

Thecommand Di rect ory Mdde Previ ous Li ne movesto the previous line in the buffer, with the point on the
filename.

32

3 Command Reference

Directory Mode Edit File Editor Command

Arguments. None
Key sequence: Enter, ForE

Thecommand Di rectory Mdde Edit Fil e editsthefile on the current line, and also automatically marksit as
edited. Thefileisopened in the same window.
Directory Mode Edit File In Other Window Editor Command

Arguments: None
Key sequence: O

Thecommand Di rectory Mode Edit File In O her W ndoweditsthe file on the current line, and also
automatically marksit as edited. Thefile is opened in another window.

Note: a convenient setup for visiting filesis to use Split Window Horizontally (Ct r | +X 5) to display the Directory
mode buffer, and then editing afile by Oappearsin the other editor window inside the same interface.

Directory Mode Mark Editor Command

Arguments: None
Key sequence: M

Thecommand Di rect ory Mode Mar k switches on the mark (the second character) on the current line.
Marks are used by other commands, but do not have any effect otherwise.
After marking the cursor moves to the next line.

With a prefix argument argument it does as many lines as specified by the prefix, while a negative prefix causes lines
above the current line to be marked.

Directory Mode Unmark Editor Command

Arguments. None
Key sequence: U

Thecommand Di rect ory Mdde Unmar k switches off the mark (the second character) on the current line.
Marks are used by other commands, but do not have any effect otherwise.
After unmarking the cursor moves to the next line.

With a prefix argument argument it does as many lines as specified by the prefix, while a negative prefix causes lines
above the current one to be unmarked.
Directory Mode Unmark Backward Editor Command

Arguments. None
Key sequence: Backspace

Thecommand Di rect ory Mdde Unmar k Backwar d movesto the previous line and switches off the mark. Thisis
equivalent to Directory Mode Unmar k with the prefix argument negated (or supplied as-1).

Directory Mode Unflag Edited Editor Command

Arguments: None
Key sequence: None

33

3 Command Reference

Thecommand Di rect ory Mode Unflag Edited switches off the edited flag (+ in the first character) on the current
line.
Directory Mode Flag Edited Editor Command

Arguments: None
Key sequence: None

Thecommand Di rect ory Mdde Fl ag Edit ed switches on the edited flag (+ in the first character) on the current line.

Directory Mode Toggle Edited Editor Command
Arguments. None
Key sequence: -

Thecommand Di rect ory Mdde Toggl e Edit ed changesthe state of the edited flag (+ in the first character) on the
current line. The edited flag is merely recorded in the buffer, not stored anywhere else.

Since the flag is switched on automatically when you edit afile from the Directory mode buffer, you normally do not
need to change it, but sometimes you may find it useful.

Directory Mode Mark Matches

Directory Mode Unmark Matches

Directory Mode Mark Regexp Matches

Directory Mode Unmark Regexp Matches Editor Commands

Arguments. None
Key sequence: None

ThecommandsDi rect ory Mode Mark Matches, Directory Mbde Unmark Matches,

Directory Mbde Mark Regexp Matches andDirectory Mdde Unmark Regexp Mat ches mark or unmark the
matching filenames. With a prefix argument, these commands mark the non-matching filenames. These commands first
prompt for a string or regexp to match, and then mark or unmark all the matches (non-matches with prefix argument).

See dso: Directory Mode Mark All.

Directory Mode Mark All Editor Command

Arguments: None
Key sequence: None

Thecommand Di rectory Mode Mark All marksall filenames. With a prefix argument, this command unmarks all
filenames.

See also: Directory Mode Mark Matches.

Directory Mode Mark When Edited
Directory Mode Unmark When Edited Editor Commands

Arguments: None
Key sequence: None

ThecommandsDi rectory Mode Mark Wen Edited andDirectory Mvde Unmark Wien Edited mark and
unmark all edited filenames. With a prefix argument, these commands operate on all unedited filenames.

See dso: Directory Mode Mark All.

3 Command Reference

Directory Mode Flag Delete Editor Command

Arguments. None
Key sequence: D

Thecommand Di rectory Mdde Fl ag Del et e switches on the Delete flag (D in the second character) on the current
line.

The Delete flag is used by the command Directory Mode Delete, otherwise nothing usesit.

After marking the cursor moves to the next line.

With aprefix argument it does as many lines as specified by the prefix. A negative prefix argument causes lines above
the current one to be marked for deletion.

Directory Mode Flag Delete When Marked Editor Command

Arguments. None
Key sequence: None

Thecommand Di rect ory Mdde Fl ag Del ete When Marked flagsfor deletion al the marked filenames. With a
prefix argument, it flags al the unmarked filenames.

3.7.3 Explicit editing of the Directory mode buffer

Directory Mode Kill Line Editor Command

Arguments. None
Key sequence: Ctrl +K

Thecommand Di rectory Mode Kill Line killsthe current line. Thisislike the ordinary Kill Line command,
except that it always removes complete lines (rather than from the point), and it gives an editor error if you try to delete
part of the header.

Force Undo Editor Command

Arguments. None
Key sequence: Ctrl+_orCrl +X U

The command For ce Undo isthe same as Undo, but works for a read-only buffer too.

Note: This command can be used in other modes too.

3.7.4 Modifying the file system from the Directory mode buffer

Directory Mode Delete Editor Command

Arguments: None
Key sequence: X

Thecommand Di rect ory Mode Del et e deletesthe filesthat are marked for deleting (D in second character).
It first confirms that you really want to delete the files, and then deletes them.
It also deletes the corresponding lines and clears the undo information in the Directory mode buffer.

Note: Like anything that deletes files, you need to be careful when using this command.

35

3 Command Reference

Note: When deleting many files, it is convenient to first create a buffer with only the marked files using Directory Mode
New Buffer With Flagged Delete. That makesit easy to see which files you are going to delete.

See dso: Directory Mode Flag Delete.

Directory Mode Copy Marked Editor Command

Arguments. None
Key sequence: C

Thecommand Di rect ory Mbde Copy Mar ked copiesthe marked files to another directory. First it prompts for a
directory, and then copies the marked filesto that directory.

This command clears the undo information in the Directory mode buffer.

Note: When copying many files, it is convenient to first create a buffer with only the marked files using Directory M ode
New Buffer With Marked (keystroke T)..That makes it easy to see which files you are going to copy.

Directory Mode Move Marked Editor Command

Arguments: None
Key sequence: Y

Thecommand Di rect ory Mdde Move Mar ked movesthe marked files to another directory. First it promptsfor a
directory, and then moves the marked files to that directory.

This command also removes the corresponding lines and clears the undo information in the Directory mode buffer.

Note: When moving many files, it is convenient to first create a buffer with only the marked files using Directory M ode
New Buffer With Marked (keystroke T). That makes it easy to see which files you are going to move.

Directory Mode Rename Editor Command

Arguments. None
Key sequence: R

Thecommand Di rect ory Mode Renane renamesthe file on the current line.
This prompts for a new name for the file, and then renames the file. It then changesthe line to contain the new name.

This command clears the undo information in the Directory mode buffer.

3.7.5 Creating new Directory mode buffers

Directory Mode New Buffer With Marked Editor Command

Arguments: None
Key sequence: T

Thecommand Di rect ory Mode New Buffer Wth Marked createsanew buffer in Directory mode, containing
only the marked lines (that is, thosewi t h *). With a prefix argument, it creates a buffer with only the unmarked lines.

This command does not affect the current buffer.

Note: Thisis especialy useful before doing a batch operation (delete, copy or move) to first check that you are operating
on the correct set of files.

36

3 Command Reference

Directory Mode New Buffer With Edited Editor Command

Arguments. None
Key sequence: Ctrl +T

Thecommand Di rectory Mbde New Buffer Wth Edited createsanew buffer in Directory mode, containing
only the edited lines (that is, those with +).

With aprefix argument, it creates a buffer with only the un-edited lines.

This command does not affect the current buffer.

Directory Mode New Buffer With Flagged Delete Editor Command

Arguments: None
Key sequence: Al t +T

Thecommand Di rectory Mdde New Buffer Wth Fl agged Del et e createsanew buffer in Directory mode,
containing only the "delete” lines (that is, those with D).

With a prefix argument, it creates a buffer with only the lines that are not flagged for deletion.

This command does not affect the current buffer.

Directory Mode New Buffer With Matches Editor Command

Arguments. None
Key sequence: S

Thecommand Di rect ory Mode New Buffer Wth Mat ches promptsfor astring, and then creates a buffer
containing only the lines that match this string. With a prefix argument it creates a buffer with only the non-matching
lines.

This command does not affect the current buffer.

Directory Mode New Buffer With Regexp Matches Editor Command

Arguments: None
Key sequence: Al t +S

Thecommand Di rect ory Mbde New Buffer Wth Regexp Mat ches promptsfor aregular expression, and then
creates a buffer containing only the lines that match this regular expression. With a prefix argument it creates a buffer
with only the non-matching lines.

This command does not affect the current buffer.

3.8 Movement

This section gives details of commands used to move the current point (indicated by the cursor) around the buffer.

The use of prefix arguments with this set of commands can be very useful, asthey allow you to get where you want to go
faster. In general, using a negative prefix argument repeats these commands a certain number of times in the opposite logical
direction. For example, thecommand Ct r | +U 10 Ct r| +B movesthe cursor 10 characters backwards, but the command
Crl+U -10 Crl+Bmovesthe cursor 10 characters forward.

Some movement commands may behave slightly differently in different modes as delimiter characters may vary.

To help you keep track of places you have visited, commands which are likely move the point some distance record their

37

3 Command Reference

starting point as alocation. Thislocation can later be revisited by the commands listed in 3.10 L ocations.

Forward Character Editor Command

Arguments: None
Key sequence: Ctrl +F or Ri ght

Moves the current point forward one character.

Backward Character Editor Command

Arguments. None
Key sequence: Ctrl +Bor Left

Moves the current point backward one character.

Forward Word Editor Command

Arguments: None
Key sequence: Al t +F

Moves the current point forward one word.

Backward Word Editor Command

Arguments: None
Key sequence: Al t +B

Moves the current point backward one word.

Beginning of Line Editor Command

Arguments. None
Key sequence; Ctrl +A

Moves the current point to the beginning of the current line.

End of Line Editor Command

Arguments: None
Key sequence: Ctrl +E

Moves the current point to the end of the current line.

Next Line Editor Command

Arguments: None
Key sequence: Ctrl +Nor Down

Moves the current point down one line. If that would be after the end of the line, the current point is moved to the end of
thelineinstead.

Previous Line Editor Command

Arguments. None
Key sequence: Ctrl +Por Up

Moves the current point up oneline. If that would be after the end of the line, the current point is moved to the end of the
line instead.

38

3 Command Reference

Goto Line Editor Command

Arguments. number
Key sequence: None

Moves to the line numbered number.

Records the starting location (see 3.10 L ocations).

What Line Editor Command

Arguments. None.
Key sequence: None

Printsin the Echo Areathe line number of the current point.

Forward Sentence Editor Command

Arguments: None
Key sequence: Al t +E

Moves the current point to the end of the current sentence. If the current point is already at the end of a sentence, it is
moved to the end of the next sentence.
Backward Sentence Editor Command

Arguments: None
Key sequence: Al t +A

Moves the current point to the start of the current sentence. If the current point is already at the start of a sentence, itis
moved to the beginning of the previous sentence.

Forward Paragraph Editor Command

Arguments. None
Key sequence: Al t +]

Moves the current point to the end of the current paragraph. If the current point is already at the end of a paragraph, then
it ismoved to the end of the next paragraph.
Backward Paragraph Editor Command

Arguments: None
Key sequence: Al t +[

Moves the current point to the start of the current paragraph. If the current point is already at the start of a paragraph,
then it is moved to the beginning of the previous paragraph.
Scroll Window Down Editor Command

Arguments: None
Key sequence: Cirl +V

edi tor:scrol | -w ndow down-conmand p &optional window

Changes the text that is being displayed to be one screenful forward, minusscr ol | - over | ap. If the current point is no
longer included in the new text, it is moved to the start of the line nearest to the centre of the window.

A prefix argument causes the current screen to be scrolled up the number of lines specified and that number of new lines
are shown at the bottom of the window.

39

3 Command Reference

The argument window is the name of the window to be scrolled. The default isthe current window.

Scroll Window Up Editor Command

Arguments: None
Key sequence: Al t +V

edi tor:scrol |l -w ndow up-command p &opti onal window

Changes the text that is being displayed to be one screenful back, minusscr ol | - over | ap. If the current point is no
longer included in the new text, it is moved to the start of the line nearest to the centre of the window.

A prefix argument causes the current screen to be scrolled down the number of lines specified and that number of new
lines are shown at the top of the window.

The argument window is the name of the window to be scrolled. The default is the current window.

scroll-overlap Editor Variable
Default value: 1
Determines the number of lines of overlap when Scroll Window Down and Scroll Window Up are used with no prefix
argument.

Line to Top of Window Editor Command

Arguments: None
Key sequence: None

Moves the current line to the top of the window.

Top of Window Editor Command

Arguments: None
Key sequence: None

Moves the current point to the start of the first line currently displayed in the window.

Bottom of Window Editor Command

Arguments. None
Key sequence: None

Moves the current point to the start of the last line that is currently displayed in the window.

Move to Window Line Editor Command

Arguments: None
Key sequence: Al t +Shi ft +R

Without a prefix argument, moves the current point to the start of the center line in the window.

With a positive (negative) integer prefix argument p, moves the point to the start of the pth line from the top (bottom) of
the window.

Beginning of Buffer Editor Command

Arguments:. None
Key sequence: Al t +Shi ft +<

Moves the current point to the beginning of the current buffer.

40

3 Command Reference

Records the initial location (see 3.10 L ocations).

End of Buffer Editor Command

Arguments: None
Key sequence: Al t +Shi ft +>

Moves the current point to the end of the current buffer.

Records theinitial location (see 3.10 L ocations).

Beginning of Buffer Preserving Point Editor Command

Arguments: None
Key sequence in macOS editor emulation: Hone

The command Begi nni ng of Buffer Preserving Point scrollsthe current window to the beginning of the
buffer, without moving the buffer point.
End of Buffer Preserving Point Editor Command

Arguments. None
Key sequence in macOS editor emulation: End

The command End of Buffer Preserving Point scrollsthe current window to the end of the buffer, without
moving the buffer point.
Beginning of Window Editor Command

Arguments. None
Key sequence: Ctrl +Pri or

The command Begi nni ng of W ndow moves the buffer point to the beginning of the window.

End of Window Editor Command

Arguments: None
Key sequence: Ct r | +Next

The command End of W ndow moves the buffer point to the end of the last line that is fully displayed.

Skip Whitespace Editor Command

Arguments. None
Key sequence: None

Skips to the next non-whitespace character if the current character is a whitespace character (for example, Space, Tab or
newline).

Goto Point Editor Command

Arguments: point
Key sequence: None

Moves the current point to point, where point is a character position in the current buffer.

Scroll Window Down Preserving Highlight Editor Command

Arguments: None
Key sequence: Shi ft +Next

41

3 Command Reference

The command Scrol | W ndow Down Preserving Hi ghlight isthe same as Scroll Window Down except that if
there is ahighlight region it is extended to the new position of the point rather than unhighlighted.

Scroll Window Up Preserving Highlight Editor Command

Arguments: None
Key sequence: Shift+Pri or

The command Scrol | W ndow Up Preserving Highlight isthesameas Scroll Window Up except that if there
isahighlight region it is extended to the new position of the point rather than unhighlighted.

Scroll Window Down In Place
Scroll Window Up In Place Editor Commands

Arguments. None
Key sequence: None

The commands Scrol | W ndow Down In Place andScroll Wndow Up I n Pl ace scroll the window up or
down, keeping the point in the same place on the screen as much as possible.

Without a prefix argument, scrolls one line. With a prefix argument, scrolls that many lines.

Note: These commands differ from other Scrol I W ndow. . . commands in that, by default, they scroll one line rather
than whole pages. They also retain any highlight.

Scroll Window Up Moving Point Editor Command

Arguments: None
Key sequence in Microsoft Windows editor emulation: Pri or
Key sequence in macOS editor emulation: Ctrl +Pri or

The command Scrol | W ndow Up Mvi ng Poi nt scrollsthe window up. If the current point is not in the newly-
displayed text, it is moved appropriately, trying to keep it in the same place on the screen.

Without a prefix argument, it scrolls by the window height lessscr ol | - over | ap. With a prefix argument p, the current
window is scrolled p lines and p new lines are shown at the top.

Scroll Window Down Moving Point Editor Command

Arguments. None
Key sequence in Microsoft Windows editor emulation: Next
Key sequence in macOS editor emulation: Ct r | +Next

The command Scrol | W ndow Down Mbvi ng Poi nt scrollsthe window down. If the current point is not in the
newly-displayed text, it is moved appropriately, trying to keep it in the same place on the screen.

Without a prefix argument, it scrolls by the window height lessscr ol | - over | ap. With a prefix argument p, the current
window is scrolled p lines and p new lines are shown at the bottom.

Scroll Window Up Preserving Point Editor Command

Arguments. None
Key sequence in macOS editor emulation: Ctrl +Up or Pri or

The command Scrol | W ndow Up Preserving Point isthe same as Scroll Window Up except that, when the
editor emulation does not force the point to be visible (Microsoft Windows and macOS), it does not move the point when
it becomesinvisible.

42

3 Command Reference

Scroll Window Down Preserving Point Editor Command

Arguments. None
Key sequence in macOS editor emulation: Ct r | +Down or Next

The command Scrol | W ndow Down Preserving Poi nt isthe same as Scroll Window Down except that, when
the emulation does not force the point to be visible (Microsoft Windows and macOS), it does not move the point when it
becomesinvisible.

3.9 Marks and regions

Thefirst part of this section gives details of commands associated with marking, while the second provides details of afew
commands whose areais limited to aregion. Other region specific commands are available but are dealt with in more
appropriate sections of this manual. For example, Write Region is dealt with under the 3.5 File handling as it involves
writing aregion to afile.

Details of marks are kept in amark ring so that previously defined marks can be accessed. The mark ring works like a stack,
in that marks are pushed onto the ring and can only be popped off on a"last in first out" basis. Each buffer has its own mark
ring.

Note that marks may also be set by using the mouse—see 3.35 Buffers, windows and the mouse—but also note that a
region must be defined either by using the mouse or by using editor key sequences, as the region may become unset if a
combination of the two isused. For example, using Ct r | +Space to set amark and then using the mouse to go to the start of
the required region unsets the mark.

Note: the editor also records locations of the current point which can be revisited by the commands listed in 3.10 L ocations.
Unlike marks, these locations do not interact with the region.

3.9.1 Marks

Set Mark Editor Command

Arguments: None
Key sequence: Ctr | +Space or Middle Mouse Button

With no prefix argument, pushes the current point onto the mark ring, effectively setting the mark to the current point,
and activates the region.

With a prefix argument equal to the value of the pr ef i x- ar gunent - def aul t, Pop and Goto Mark isinvoked.

With a prefix argument equal to the square of the pr ef i x- ar gunent - def aul t (achieved by typingCtr1 +U Ctrl +U
before invoking Set Mar k), Pop Mark isinvoked.

Pop and Goto Mark Editor Command

Arguments. None
Key sequence: None

Moves the current point to the mark without saving the current point on the mark ring (in contrast with Exchange Point
and Mark). After the current point has been moved to the mark, the mark ring is rotated. The current region is de-
activated.

Pop Mark Editor Command

Arguments. None
Key sequence: Alt +Ctrl +Space

3 Command Reference

Rotates the mark ring so that the previous mark becomes the current mark. The point is not moved but the current region
is de-activated.
Exchange Point and Mark Editor Command

Arguments: None
Key sequence: Cirl +X Cirl +X

edi t or: exchange- poi nt - and- mar k- conmand p &opti onal buffer

Sets the mark to the current point and moves the current point to the previous mark. This command can therefore be used
to examine the extent of the current region.

The argument buffer isthe buffer in which to exchange the point and mark. The default value is the current buffer.

Mark Word Editor Command

Arguments: number
Key sequence: Al t +@

Marks the word following the current point. A prefix argument, if supplied, specifies the number of words marked.

Mark Sentence Editor Command

Arguments. None
Key sequence: None

Puts the mark at the end of the current sentence and the current point at the start of the current sentence. The sentence
thereby becomes the current region. If the current point isinitially located between two sentences then the mark and
current point are placed around the next sentence.

Mark Paragraph Editor Command

Arguments:. None
Key sequence: Al t +H

Puts the mark at the end of the current paragraph and the current point at the start of the current paragraph. The
paragraph thereby becomes the current region. If the current point isinitially located between two paragraphs, then the
mark and current point are placed around the next paragraph.

Mark Whole Buffer Editor Command

Arguments: None
Key sequence: Ctrl +X H

Sets the mark at the end of the current buffer and the current point at the beginning of the current buffer. The current
region is thereby set as the whole of the buffer.

A non-nil prefix argument causes the mark to be set as the start of the buffer and the current point at the end.

Records the starting location (see 3.10 L ocations).

3.9.2 Regions

Count Words Region Editor Command

Arguments: None
Key sequence: None

3 Command Reference

Displays a count of the total number of words in the region between the current point and the mark.

Count Lines Region Editor Command

Arguments: None
Key sequence: None

Displays a count of the total number of linesin the region between the current point and the mark.

region-query-size Editor Variable
Default value: 60

If the region between the current point and the mark contains more lines than the value of this editor variable, then any
destructive operation on the region prompts the user for confirmation before being executed.

Print Region Editor Command

Arguments: None
Key sequence: None

Prints the current region, using capi : pri nt -t ext . Seethe CAPI User Guide and Reference Manual for details of this
function.

3.10 Locations

A location is the position of the current point in a buffer at some timein the past. Locations are recorded automatically by the
editor for most commands that take you to a different buffer or where you might lose your place within the current buffer (for
example Beginning of Buffer). They are designed to be a more comprehensive form of the mark ring (see Pop and Goto
Mark), but without the interaction with the selected region.

Go Back Editor Command

Arguments: None
Key sequence: Ctrl +X C

Takes you back to the most recently recorded location. If aprefix argument count is supplied, it takes you back count
locationsin the location history. If count is negative, it takes you forward again count locations in the history, provided
that no more locations have been recorded since you last went back.

Select Go Back Editor Command

Arguments. None
Key sequence: Ctrl +X M

Takes you back to a previously recorded location, which you select from alist.

Any prefix argument isignored.

Go Forward Editor Command

Arguments. None
Key sequence: Ctrl +X P

Takes you back to the next location in the ring of recorded locations. If a prefix argument count is supplied, it takes you
forward count locations in the location history. If count is negative, it takes you back count locationsin the history.

3 Command Reference

3.11 Deleting and killing text

There are two ways of removing text: deletion, after which the deleted text is not recoverable (except with the Undo
command); and killing, which appends the deleted text to the kill ring, so that it may be recovered using the Un-Kill and
Rotate Kill Ring commands. The first section contains details of commands to delete text, and the second details of
commands to kill text.

Note that, if Delete Selection Mode is active, then any currently selected text is deleted when text is entered. 3.13 Delete
Selection for details.

The use of prefix arguments with this set of commands can be very useful. In general, using a negative prefix argument
repeats these commands a certain number of times in the opposite logical direction. For example, the key sequence
Ctrl+U 10 Alt+D deletes 10 words after the current point, but the key sequence Ctr | +U - 10 Al t +D deletes 10 words
before the current point.

3.11.1 Deleting Text

Delete Next Character Editor Command

Arguments: None
Key sequence: Cirl +D
Key sequence: Del et e

Deletes the character immediately after the current point.

Delete Previous Character Editor Command

Arguments. None
Key sequence: Backspace

Deletes the character immediately before the current point.

Delete Previous Character Expanding Tabs Editor Command

Arguments: None
Key sequence: None

Deletes the character immediately before the current point, but if the previous character isa Tab, then thisis expanded
into the equivalent number of spaces, so that the apparent space is reduced by one.

A prefix argument deletes the required number of characters, but if any of them are tabs, the equivalent spaces are
inserted before the deletion continues.

Delete Horizontal Space Editor Command

Arguments. None
Key sequence: Al t +\

Deletes all spaces on the line surrounding the current point.

Just One Space Editor Command

Arguments: None
Key sequence: Al t +Space

Deletes all space on the current line surrounding the current point and then inserts asingle space. If there wasinitially no
space around the current point, asingle space is inserted.

46

3 Command Reference

Delete Blank Lines Editor Command

Arguments. None
Key sequence: CGtrl +X Ctrl +O

If the current point is on ablank line, all surrounding blank lines are deleted, leaving just one. If the current point ison a
non-blank line, all following blank lines up to the next non-blank line are deleted.

Delete Region Editor Command

Arguments: None
Key sequence: None

Delete the current region. Also available viaedi t or : del et e- r egi on- command.

Clear Listener Editor Command

Arguments. None
Key sequence: None

Deletesthe text in a Listener, leaving you with a prompt. Undo information is not retained, although you are warned
about this before confirming the command.

This command is useful if the Listener session has grown very large.

Clear Output Editor Command

Arguments: None
Key sequence: None

Deletes the text in the Output tab of a Listener or Editor tool, or an Output Browser. Undo information is discarded
without warning.

This command is useful if the output has grown very large.

3.11.2 Killing text

Most of these commands result in text being pushed onto the kill ring so that it can be recovered. Thereisonly onekill ring
for al buffers so that text can be copied from one buffer to another.

Normally each kill command pushes anew block of text onto the kill ring. However, if more than one kill command isissued
sequentially, and the text being killed was next to the previously killed text, they form asingle entry in the kill ring
(exceptions being Kill Region and Save Region).

Append Next Kill isdifferent in that it affects where a subsequent killed text is stored in the kill ring, but does not itself
modify the kill ring.

Kill Next Word Editor Command

Arguments: None
Key sequence: Al 't +D

Killsthe rest of the word after the current point. If the current point is between two words, then the next word is killed.

Kill Previous Word Editor Command

Arguments. None
Key sequence: Al t +Backspace

47

3 Command Reference

Killsthe rest of the word before the current point. If the current point is between two words, then the previousword is
killed.

Kill Line Editor Command

Arguments: None
Key sequence: Cirl +K

Kills the characters from the current point up to the end of the current line. If the line is empty then the line is del eted.

Backward Kill Line Editor Command

Arguments. None
Key sequence: None

Kills the characters from the current point to the beginning of theline. If the current point is already at the beginning of
the line, the current line is joined to the previous line, with any trailing space on the previous line killed.
Forward Kill Sentence Editor Command

Arguments: None
Key sequence: Al t +K

Killsthe text starting from the current point up to the end of the sentence. If the current point is between two sentences,
then the whole of the next sentence is killed.
Backward Kill Sentence Editor Command

Arguments: None
Key sequence: Ctrl +X Backspace

Killsthe text starting from the current point up to the beginning of the sentence. If the current point is between two
sentences, then the whole of the previous sentenceis killed.

Kill Region Editor Command

Arguments. None
Key sequence: Ctrl +W

Kills the region between the current point and the mark.

Save Region Editor Command
Arguments: None
Key sequence: Al t +W

Pushes the region between the current point and the mark onto the kill ring without deleting it from the buffer. Text saved
in thisway can therefore be inserted el sewhere without first being killed.

Append Next Kill Editor Command
Arguments: None
Key sequence: Al t +Ctr | +W

If the next command entered kills any text then this text will be appended to the existing kill text instead of being pushed
separately onto the kill ring.

3 Command Reference

Zap to Char Editor Command

Arguments. None
Key sequence: Al t +Z

Prompts for a character and kills text from the current point to the next occurrence of that character in the current buffer.
If aprefix argument p is used, then it killsto the p'th occurrence. If p is negative, then it kills backwards.

An editor error issignaled if the character cannot be found in the buffer.

3.12 Inserting text

This section contains details of commands used to insert text from the kill ring—see 3.11 Deleting and killing text—and
various other commands used to insert text and lines into the buffer.

Un-Kill Editor Command

Arguments. None
Key sequence: Ctrl +Y

Selects (yanks) the top item in the kill ring (which represents the last piece of text that was killed with akill command or
saved with Save Region) and insertsit before the current point. The current point isleft at the end of the inserted text,
and the mark is automatically set to the beginning of the inserted text.

A prefix argument (Ct r | +U number) causes the item at position number in the ring to be inserted. The order of items on
the ring remains unaltered.

Un-Kill As String Editor Command

Arguments. None
Key sequence: None

Similar to Un-Kill, but inserts the text as a Lisp string, surrounded by double-quotes.

Un-Kill As Filename Editor Command

Arguments. None
Key sequence: None

Similar to Un-Kill, but inserts the text as afilename, converting any backslash charactersto forward slash so that it does
not need to be escaped in aLisp string.

Rotate Kill Ring Editor Command

Arguments: None
Key sequence: Al t +Y

Replaces the text that has just been un-killed with the item that is next on the kill ring. It is therefore possible to recover
text other than that which was most recently killed by typing Ct r | +Y followed by Al t +Y the required number of times.
If Un-Kill was not the previous command, an error is signaled.

Note that the ring is only rotated and no items are actually deleted from the ring using this command.

A prefix argument causes the kill ring to be rotated the appropriate number of times before the top item is selected.

New Line Editor Command
Arguments. None

49

3 Command Reference

Key sequence: Ret urn

Opens a new line before the current point. If the current point is at the start of aline, an empty line isinserted aboveit. If
the current point isin the middle of aline, that lineis split. The current point always becomes located on the second of
the two lines.

A prefix argument causes the appropriate number of lines to be inserted before the current point.

Open Line Editor Command

Arguments: None
Key sequence: Ctrl +O

Opens a new line after the current point. If the current point is at the start of aline, an empty lineisinserted aboveit. If
the current point isin the middle of aline, that lineis split. The current point always becomes located on the first of the
two lines.

A prefix argument causes the appropriate number of lines to be inserted after the current point.

Quoted Insert Editor Command

Arguments: args
Key sequence: Ctrl +Q&r est args

Quot ed I nsert isaversatile command allowing you to enter characters which are not accessible directly on your
keyboard.

A single argument key isinserted into the text literally. This can be used to enter a control character (suchasCtrl +L)
into a buffer. Note that control characters other than Tab and Newl i ne are displayed with aleading ~ and Escape is
displayed as”[.

You may input a character by entering its Octal Unicode code: press Ret ur n to indicate the end of the code. For
example enter:

CGrl+Q 4 3 Return
toinput #.

Self Insert Editor Command

Arguments. None
Key sequence: key

editor:self-insert-comand p &optional char

Thisis the basic command used for inserting each character that is typed. The character to be inserted ischar. Thereis
no need for the user to use this command explicitly.

Dynamic Completion Editor Command

Arguments: None
Key sequence: Al t +/

Tries to complete the current word, by looking backwards for aword that starts with the same characters as have already
been typed. Repeated use of this command makes the search skip to successively previous instances of words beginning

with these characters. A prefix argument causes the search to progress forwards rather than backwards. If the buffer isin
Lisp mode then completion occurs for Lisp symbols as well as words.

50

http://www.lispworks.com/documentation/HyperSpec/Body/03_da.htm

3 Command Reference

3.13 Delete Selection

When in Delete Selection Mode, commands that insert text into the buffer first delete any selected text. Delete Selection
Modeisaglobal editor setting. It is off by default with Emacs keys, and is on by default when using Microsoft Windows
editor emulation.

Delete Selection Mode Editor Command

Arguments:. None
Key sequence: None

Toggles Delete Selection Mode, switching it onif it is currently off, and off if it is currently on.

3.14 Undoing

Commands that modify the text in a buffer can be undone, so that the text revertsto its state before the command was
invoked, using Undo. Details of modifying commands are kept in an undo ring so that previous commands can be undone.
The undo ring works like a stack, in that commands are pushed onto the ring and can only be popped off on a"last in first
out" basis.

Un-Kill can also be used to replace text that has inadvertently been del eted.

Undo Editor Command

Arguments. None
Key sequence: Ctrl +Shift+_

Undoes the last command. If invoked repeatedly, the most recent commands in the editing session are successively
undone.

See also: Clear Undo, Toggle Global Simple Undo.

undo-ring-size Editor Variable
Default value: 100

The number of items in the undo ring.

3.15 Case conversion

This section provides details of the commands which allow case conversions on both single words and regions of text. The
three general types of case conversion are converting words to uppercase, converting words to lowercase and converting the
first letter of wordsto uppercase.

Lowercase Word Editor Command

Arguments. None
Key sequence: Al t +L

Converts the current word to lowercase, starting from the current point. If the current point is between two words, then
the next word is converted.

A negative prefix argument converts the appropriate number of words before the current point to lowercase, but leaves
the current point where it was.

51

3 Command Reference

Uppercase Word Editor Command

Arguments. None
Key sequence: Al t +U

Converts the current word to uppercase, starting from the current point. If the current point is between two words, then
the next word is converted.

A negative prefix argument converts the appropriate number of words before the current point to uppercase, but leaves
the current point where it was.

Capitalize Word Editor Command

Arguments. None
Key sequence: Al t +C

Converts the current word to lowercase, capitalizing the first character. If the current point isinside aword, the character
immediately after the current point is capitalized.

A negative prefix argument capitalizes the appropriate number of words before the current point, but |eaves the point
where it was.

Lowercase Region Editor Command

Arguments. None
Key sequence: Ctrl +X Cirl +L

Converts all the charactersin the region between the current point and the mark to lowercase.

Uppercase Region Editor Command

Arguments:. None
Key sequence: Ctrl +X Ctrl +U

Converts all the charactersin the region between the current point and the mark to uppercase.

Capitalize Region Editor Command

Arguments: None
Key sequence: None

Converts all the words in the region between the mark and the current point to lowercase, capitalizing the first character
of each word.

3.16 Transposition

This section gives details of commands used to transpose characters, words, lines and regions.

Transpose Characters Editor Command

Arguments. None
Key sequence: Ctrl +T

Transposes the current character with the previous character, and then moves the current point forwards one character.

If this command is issued when the current point is at the end of aline, the two characters to the left of the cursor are
transposed.

52

3 Command Reference

A positive prefix argument causes the character before the current point to be shifted forwards the required number of
places. A negative prefix argument has asimilar effect but shifts the character backwards. In both cases the current point
remains located after the character which has been moved.

Transpose Words Editor Command

Arguments: None
Key sequence: Al t +T

Transposes the current word with the next word, and then moves the current point forward one word. If the current point
isinitially located between two words, then the previous word is moved over the next word.

A positive prefix argument causes the current or previous word to be shifted forwards the required number of words. A
negative prefix argument has a similar effect but shifts the word backwards. In both cases the current point remains
located after the word which has been moved.

Transpose Lines Editor Command

Arguments: None
Key sequence: Ctrl +X Ctrl +T

Transposes the current line with the previous line, and then moves the current point forward one line.

A positive prefix argument causes the previous line to be shifted forwards the required number of lines. A negative prefix
argument has asimilar effect but shifts the line backwards. In both cases the current point remains located after the line
which has been moved.

A prefix argument of zero transposes the current line and the line containing the mark.

Transpose Regions Editor Command

Arguments. None
Key sequence: None

Transposes two regions. One region is delineated by the current point and the mark. The other region is delineated by the
next two points on the mark ring. To use this command it is necessary to use Set Mark at the beginning and end of one
region and at the beginning of the other region, and then move the current point to the end of the second region.

3.17 Overwriting

By default each character that you type isinserted into the text, with the existing characters being shifted as appropriate. In
Overwrite mode, each character that you type deletes an existing character in the text.

When in Overwrite mode, a character can be inserted without deleting an existing character by preceding it withCt r | +Q

Overwrite Mode Editor Command

Arguments: None
Key sequence: | nsert

Switches Overwrite mode on if it is currently off, and off if it is currently on.

With a positive prefix argument, Overwrite mode is turned on. With a zero or negative prefix argument it is turned off.
Using prefix arguments with Over wri t e Mode disregards the current state of the mode.

Self Overwrite Editor Command
Arguments: None

53

3 Command Reference

Key sequence: key

If the current point isin the middle of aline, the next character (that is, the character that is highlighted by the cursor) is
replaced with the last character typed. If the current point is at the end of aline, the new character isinserted without
removing any other character.

A prefix argument causes the new character to overwrite the relevant number of characters.

Thisis the command that is invoked when each character is typed in overwrite mode. Thereis no need for usersto
invoke this command explicitly.
Overwrite Delete Previous Character Editor Command

Arguments. None
Key sequence: None

Replaces the previous character with space, except that tabs and newlines are deleted.

3.18 Indentation

This section contains details of commands used to indent text. Indentation is usually achieved by inserting tab or space
charactersinto the text so as to indent that text a predefined number of spaces.

The effect of the editor indentation commands depends on the major mode of the buffer. Where relevant, the command
details given below provide information on how they operate in Text mode and Lisp mode. The operation of commandsin
Fundamental mode is generally the same as that of Text mode.

Indent Editor Command

Arguments. None
Key sequence: Tab

In Text mode, spaces-f or - t ab #\ Space characters are inserted. A prefix argument causes thisto occur at the start of
the appropriate number of lines (starting from the current line).

In Lisp mode, the current line is indented according to the structure of the current Lisp form. A prefix argument p causes
p linesto be indented according to Lisp syntax.

Seeeditor: *indent-with-tabs* for control over theinsertion of #\ Tab characters by this and other indentation
commands.

Note: the key sequence Tab is overridden in Lisp mode to perform Indent Selection or Complete Symbol.

spaces-for-tab Editor Variable
Default value: 8

Determines the width of the whitespace (that is, the number of #\ Space characters) used to display a#\ Tab character.

Indent Region Editor Command

Arguments. None
Key sequence: Al t +Ctrl +\

Indents all the text in the region between the mark and the current point.

In Text mode a block of whitespace, whichisspaces- f or -t ab wide, isinserted at the start of each line within the
region.

3 Command Reference

In Lisp mode the text is indented according to the syntax of the Lisp form.

In both cases, a prefix argument causes any existing indentation to be deleted and replaced with a block of whitespace of
the appropriate width.

Indent Rigidly Editor Command

Arguments. None
Key sequence: Ctrl +X TaborCtrl +X Cirl +l

Indents each line in the region between the current point and the mark by a block of whitespace whichis
spaces- f or - t ab wide. Any existing whitespace at the beginning of the lines is retained.

A positive prefix argument causes the lines to be indented by the appropriate number of spaces, in addition to their
existing space. A negative prefix argument causes the lines to be shifted to the left by the appropriate number of spaces.
Where necessary, tabs are converted to spaces.

Indent Selection Editor Command

Arguments. None
Key sequence: None

Indents all the text in the selection or the current line if there is no selection. With a prefix argument p, any existing
indentation is deleted and replaced with a block of space p columns wide.

See also I ndent Selection or Complete Symbol.

Delete Indentation Editor Command

Arguments. None
Key sequence: Al t +Shi ft +/

Joins the current line with the previous one, deleting all whitespace at the beginning of the current line and at the end of
the previous line. The deleted whitespace is normally replaced with a single space. However, if the deleted whitespaceis
at the beginning of aline, or immediately after a(, or immediately beforea) , then the whitespace is merely deleted
without any characters being inserted. If the preceding character is a sentence terminator, then two spaces are left instead
of one.

A prefix argument causes the following line to be joined with the current line.

Back to Indentation Editor Command

Arguments: None
Key sequence: Al t +M

Moves the current point to the first character in the current line that is not a whitespace character.

Indent New Line Editor Command

Arguments. None
Key sequence: None

Moves everything to the right of the current point to a new line and indentsit. Any whitespace before the current point is
deleted. If thereisafill - prefi x, thisisinserted at the start of the new line instead.

A prefix argument causes the current point to be moved down the appropriate number of lines and indented.

55

3 Command Reference

Quote Tab Editor Command

Arguments. None
Key sequence: None

Inserts a Tab character.

A prefix argument causes the appropriate number of tab characters to be inserted.

3.19 Filling

Filling involves re-formatting text so that each line extends as far to the right as possible without any words being broken or
any text extending past thefil | - col um.

Thefirst section deals with general commands used to fill text, while the second section provides information on Auto-Fill
mode and related commands.

3.19.1 Fill commands

Fill Paragraph Editor Command

Arguments. None
Key sequence: Al t +Q

Fills the current paragraph. If the current point islocated between two paragraphs, the next paragraph isfilled.
A prefix argument causes the current fill operation to use that value, rather than thevalueof fil | - col um.

Fill Region Editor Command

Arguments. None
Key sequence: Al t +G

Fills the region from the current point to the mark.

A prefix argument causes the current fill operation to use that value, rather than thevalueof fil | - col um.
fill-column Editor Variable

Default value: 70

Determines the column at which text in the current buffer is forced on to a new line when filling text.

Set Fill Column Editor Command

Arguments. None
Key sequence: CGtrl +X F

Setsthevalueof fil | - col um, for the current buffer, as the column of the current point.
A prefix argument causesfi | | - col unm to be set at the required value.

fill-prefix Editor Variable
Default value: ni |

Defines a string which is excluded when each line of the current buffer is re-formatted using the filling commands. For
example, if thevalueis";;", then these characters at the start of aline are skipped over when the text is re-formatted.

56

3 Command Reference

Thisalows you to re-format (fill) Lisp comments. If thevalueisni | , no characters are excluded when text isfilled.

If the valesis non-nil, any line that does not begin with the value is considered to begin anew paragraph. Therefore, any
re-formatting of commentsin Lisp code does not intrude outside the commented lines.
Set Fill Prefix Editor Command

Arguments. None
Key sequence: Ctrl +X .

Setsthefi | | - prefi x of the current buffer to be the text from the beginning of the current line up to the current point.
Thefill-prefix maybesettonil by using thiscommand with the current point at the start of aline.
Center Line Editor Command

Arguments: None
Key sequence: None

Centers the current line with reference to the current valueof fi | | - col um.

A prefix argument causes the current line to be centered with reference to the required width.

3.19.2 Auto-Fill mode

By default no filling of text takes place unless specified by using one of the commands described above. A result of thisis
that the user hasto press Ret ur n at the end of each line typed to simulate filling. In Auto-Fill mode lines are broken between
words at the right margin automatically as the text is being typed. Each line is broken when a space isinserted, and the text
that extends past the right margin is put on the next line. The right hand margin is determined by the editor variable
fill-colum.

Auto Fill Mode Editor Command

Arguments: None
Key sequence: None

Switches auto-fill mode on if it is currently off, and off if it is currently on.

With a positive prefix argument, auto-fill mode is switched on. With a negative or zero prefix argument, it is switched
off. Using prefix argumentswith Aut o Fi || Mode disregards the current state of the mode.
Auto Fill Space Editor Command

Arguments:. None
Key sequence: Space
Mode: Auto-Fill

Inserts a space and breaks the line between two words if the line extends beyond the right margin. A fill prefix is
automatically added at the beginning of the new line if thevalueof fi | | - prefi x isnon-nil.

When Space isbound to thiscommand in Auto-Fill mode, this key no longer invokes Self I nsert.

A positive prefix argument causes the required number of spaces to be inserted but no line break. A prefix argument of
zero causes aline break, if necessary, but no spaces are inserted.
Auto Fill Linefeed Editor Command

Arguments: None
Key sequence: Li nef eed
Mode: Auto-Fill

57

3 Command Reference

InsertsalLi nef eed andafill - prefix (if oneexists).

Auto Fill Return Editor Command

Arguments: None
Key sequence: Ret urn
Mode: Auto-Fill

The current line is broken, between two words if necessary, with no Space being inserted. Thisis equivalent to Auto Fill
Space with a zero prefix argument, but followed by a newline.

auto-fill-space-indent Editor Variable
Default value: ni |

When true, Auto-fill commands use | ndent New Comment Lineto break linesinstead of New Line.

3.20 Buffers

This section contains details of commands used to manipulate buffers.

Select Buffer Editor Command

Arguments: buffer-name
Key sequence: Ctr | +X B buffer-name

Displays a buffer called buffer-name in the current window. If no buffer name is provided, the last buffer accessed in the
current window is displayed. If the buffer that is selected is already being displayed in another window, any
modificationsto that buffer are shown simultaneously in both windows.

Select Buffer Other Window Editor Command

Arguments: buffer-name
Key sequence: None

Displays a buffer called buffer-name in anew window. If no buffer name is provided, the last buffer displayed in the
current window is selected. If the buffer that is selected is aready being displayed in another window, any modifications
to that buffer are shown simultaneously in both windows.

Select Previous Buffer Editor Command

Arguments. None
Key sequence: Al t+Ctrl +L

Displays the last buffer accessed in anew window. If the buffer that is selected is aready being displayed in another
window, any modifications to that buffer are shown simultaneously in both windows.

A prefix argument causes the appropriately numbered buffer, from the top of the buffer history, to be selected.

Circulate Buffers Editor Command

Arguments. None
Key sequence: Al t+Ctrl +Shi ft +L

Move through the buffer history, selecting the successive previous buffers.

58

3 Command Reference

Bury Buffer Editor Command

Arguments: buffer
Key sequence: None

The command Bury Buf f er putsthe buffer buffer, which defaults to the current buffer, at the end of the buffer list. If
the buffer isvisible in the current window, it is replaced by the previously selected buffer.

Edit Buffer Editor Command

Arguments: buffer-name
Key sequence: None

The command Edi t Buf f er displays abuffer buffer-name, either in the current window if it is suitable, or a suitable
window.

Note: windows such as the Output tab of the Editor tool are marked internally as not suitable for displaying arbitrary
buffers. If Edi t Buf f er isinvoked when the current window is marked, it finds another window to display the buffer.
In contrast, Select Buffer will signal an editor error in this case.

Kill Buffer Editor Command

Arguments: buffer-name
Key sequence: Ctrl +X K buffer-name

editor:kill-buffer-comand p &optional buffer-name

Deletes a buffer called buffer-name. If no buffer name is provided, the current buffer is deleted. If the buffer that is
selected for deletion has been modified then confirmation is asked for before del etion takes place.
Kill Some Buffers Editor Command

Arguments: None
Key sequence: None

Prompts for buffersto delete. When given a prefix argument, the list of buffersis sorted by name, otherwiseit is sorted
by recent use. If abuffer that is selected for deletion has been modified, then the user is prompted to save it to afile
beforeit is deleted. If the buffer isvisible in awindow, then adifferent buffer will be displayed in that window.

List Buffers Editor Command

Arguments. None
Key sequence: Ctrl +X Crl +B

Displaysalist of al the existing buffersin the Buffers window in the Editor tool. Information shown includes the name
of the buffer, its major mode, whether it has been modified or not, the pathname of any fileit is associated with, and its
Size.

A buffer can be selected by clicking the left mouse button on the buffer name. The buttons on the toolbar can then be
used to modify the selected buffer.

Create Buffer Editor Command

Arguments. buffer-name
Key sequence: None

edi tor:create-buffer-command p &optional buffer-name

Creates a buffer called buffer-name. If no buffer name is provided then the current buffer is selected. If abuffer with the

59

3 Command Reference

specified name already exists then this becomes the current buffer instead, and no new buffer is created.

New Buffer Editor Command

Arguments: None
Key sequence: None

Creates a new unnamed buffer. The buffer isin Lisp mode.

default-buffer-element-type Editor Variable

Default value: cl : char act er

The character element type used when a new buffer is created, for example by New Buffer.

Insert Buffer Editor Command

Arguments: buffer-name
Key sequence: None

Inserts the contents of a buffer called buffer-name at the current point. If no buffer name is provided, the contents of the
last buffer displayed in the current window are inserted.

Rename Buffer Editor Command

Arguments: new-name
Key sequence: None

Changes the name of the current buffer to new-name.

Toggle Buffer Read-Only Editor Command

Arguments. None
Key sequence: CGtrl +X Ctrl +Q

Makes the current buffer read only, so that no modification to its contents are allowed. If it isaready read only, this
restriction is removed.

Set Buffer Transient Edit Editor Command

Arguments: None
Key sequence: None

Thecommand Set Buffer Transient Edit makesthe current buffer writable, and disables auto-saving.

Check Buffer Modified Editor Command

Arguments: None
Key sequence: Ctrl +X Shift +~

Checks whether the current buffer is modified or not.

Buffer Not Modified Editor Command

Arguments. None
Key sequence: Al t +Shi ft +~

edi tor: buf fer-not-nodi fi ed-comuand p &optional buffer

Makes the current buffer not modified.

60

http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

3 Command Reference

The argument buffer isthe name of the buffer to be un-modified. The default isthe current buffer.

Print Buffer Editor Command

Arguments: None
Key sequence: None

The command Pri nt Buf f er printsthe current buffer, by calling capi : pri nt - di al og to select a printer and then
capi : print -t ext with the appropriate arguments to print the buffer.

See the CAPI User Guide and Reference Manual for details of these functions.

3.21 Windows

This section contains details of commands used to manipulate windows. A window ring is used to hold details of all windows
currently open.
New Window Editor Command

Arguments: None
Key sequence: Ctrl +X 2

Creates a new window and makes it the current window. Initially, the new window displays the same buffer as the
current one.

Next Window Editor Command

Arguments. None
Key sequence: None

Changes the current window to be the next window in the window ring, and the current buffer to be the buffer that is
displayed in that window.
Next Ordinary Window Editor Command

Arguments. None
Key sequence: Ctrl +X O

Changes the current window to be the next ordinary editor window, thus avoiding the need to cycle through other
window types (for example, Listeners and Debuggers).

Previous Window Editor Command

Arguments: None
Key sequence: None

Changes the current window to be the previous window visited, and the current buffer to be the buffer that is displayed in
that window.

Delete Window Editor Command

Arguments. None
Key sequence: Ctrl +X 0

Deletes the current window. The previous window becomes the current window.

61

3 Command Reference

Delete Next Window Editor Command

Arguments. None
Key sequence: None

Deletes the next window in the window ring.

Delete Other Windows Editor Command

Arguments: None
Key sequence: Ctrl +X 1

The command Del et e O her W ndows deletes (that is, closes) all other windows inside the same interface.
Applicable only inside the LispWorks I DE Editor tool.

See dso: Delete Next Window.

Previous Focus Window Editor Command

Arguments: None
Key sequence: None

The command Pr evi ous Focus W ndow switches to the editor pane that previously had the input focus.

Scroll Next Window Down Editor Command

Arguments: None
Key sequence: None

The next window in the window ring is scrolled down.

A prefix argument causes the appropriately numbered window, from the top of the window ring, to be scrolled.

Scroll Next Window Up Editor Command

Arguments: None
Key sequence: None

The next window in the window ring is scrolled up.

A prefix argument causes the appropriately numbered window, from the top of the window ring, to be scrolled.

Split Window Horizontally Editor Command

Arguments: None
Key sequence: Ctrl +X 5

Split the current window horizontally, adding awindow to the left of the current window or to theright if given a prefix
argument. The new window will display the current buffer initially.

Split Window Vertically Editor Command

Arguments: None
Key sequence: Ctrl +X 6

Split the current window vertically, adding a window above the current window or below if given a prefix argument. The
new window will display the current buffer initialy.

62

3 Command Reference

Unsplit Window Editor Command

Arguments. None
Key sequence: Ctrl +X 7

Remove another window in the same split column or row. A prefix argument causes all other windows in the same top
level windows to be removed. When invoked without a prefix, the next window is removed if thereis one, otherwise the
previous window is removed.

Toggle Count Newlines Editor Command

Arguments: None
Key sequence: None

Controlsthe size of the scroller in editor-based tools, and how the Editor tool's mode line represents the extent of the
displayed part of the buffer.

Toggl e Count New i nes switches between counting newlines and counting characters in the current buffer. The
counting determines what is displayed in the Editor tool's mode line, and how the size of the scroller is computed.

When counting newlines, the mode line shows line numbers and the total number of lines:

SartLine- EndLing[TotalLine]

When counting characters, the mode line shows percentages based on the characters displayed compared to the total
number of charactersin the buffer:

PercentSart- PercentEnd%

The default behavior is counting newlines, except for very large buffers.

Refresh Screen Editor Command

Arguments: None
Key sequence: Cirl +L

Moves the current line to the center of the current window, and then re-displays all the text in all the windows.

A prefix argument of 0 causes the current line to become located at the top of the window. A positive prefix argument
causes the current line to become located the appropriate number of lines from the top of the window. A negative prefix
argument causes the current line to become located the appropriate number of lines from the bottom of the window.

3.22 Pages

Files are sometimes thought of as being divided into pages. For example, when afileis printed on aprinter, it isdivided into
pages so that each page appears on afresh piece of paper. The ASCII key sequence Ct r | +L constitutes a page delimiter (asit
starts a new page on most line printers). A pageis the region between two page delimiters. A page delimiter can be inserted
into text being edited by using the editor command Quoted Insert (that is, typein Ctrl +Q Ctrl +L).

Previous Page Editor Command

Arguments: None
Key sequence: Ctrl +X [

Moves the current point to the start of the current page.

A prefix argument causes the current point to be moved backwards the appropriate number of pages.

63

3 Command Reference

Next Page Editor Command

Arguments. None
Key sequence: Ctrl +X]

Moves the current point to the start of the next page.
A prefix argument causes the current point to be moved forwards the appropriate number of pages.

Goto Page Editor Command

Arguments. None
Key sequence: None

Moves the current point to the start of the next page.

A positive prefix argument causes the current point to be moved to the appropriate page starting from the beginning of
the buffer. A negative prefix argument causes the current point to be moved back the appropriate number of pages from
the current location. A prefix argument of zero causes the user to be prompted for a string, and the current point is
moved to the next page with that string contained in the page title.

Records the starting location (see 3.10 L ocations).

Mark Page Editor Command

Arguments: None
Key sequence: Ctrl +X Ctrl +P

Puts the mark at the end of the current page and the current point at the start of the current page. The page thereby
becomes the current region.

A prefix argument marks the page which is the appropriate number of pages on from the current one.

Count Lines Page Editor Command

Arguments. None
Key sequence: Ctrl +X L

Displays the number of linesin the current page and the location of the current point within the page.

A prefix argument displays the total number of linesin the current buffer and the location of the current point within the
buffer (so that page delimiters are ignored).

View Page Directory Editor Command

Arguments. None
Key sequence: None

Displays alist of thefirst non-blank line after each page delimiter.

Insert Page Directory Editor Command

Arguments: None
Key sequence: None

Inserts alisting of the first non-blank line after each page delimiter at the start of the buffer, moving the current point to
the end of thislist. The location of the start of thislist is pushed onto the mark ring.

A prefix argument causes the page directory to be inserted at the current point.

3 Command Reference

3.23 Searching and replacing

This section is divided into three parts. Thefirst two provide details of commands used for searching. These commands are,
on the whole, non-modifying and non-destructive, and merely search for strings and patterns. The third part provides details
of commands used for replacing a string or pattern.

3.23.1 Searching

Most of the search commands perform straightforward searches, but there are two useful commands (I ncremental Search
and Rever se I ncremental Search) which perform incremental searches. This means that the search is started as soon as the
first character is typed.

Incremental Search Editor Command

Arguments: string
Key sequence: Ctrl +Sstring

Searches forward, starting from the current point, for the search string that is input, beginning the search as soon as each
character istyped in. When amatch isfound for the search string, the current point is moved to the end of the matched
string. If the search string is not found between the current point and the end of the buffer, an error is signaled.

The search result is highlighted. You can change the style of the highlighting in the LispWorks IDE by Preferences... >
Environment > Styles > Colors and Attributes > Search Match.

I ncrenent al Sear ch recordsthe starting location (see 3.10 L ocations).

With aprefix argument p the matches are displayed at afixed line position, p lines below the top of the window.
Otherwise, the position of the matched string within the window is influenced by the editor variable
i ncrenent al - sear ch-m ni num vi si bl e-1i nes.

For example, to display successive definitions one line from the top of the text view of the Editor window, enter:

Grl+U 2 arl+S (d e f Crl+S Crl+S

All incremental searches can be controlled by entering one of the following key sequences at any time during the search.

arl+s If the search string is empty, repeats the last incremental search, otherwise repeats aforward
search for the current search string.

If the search string cannot be found, starts the search from the beginning of the buffer (wrap-
around search).

Ctrl +R Changes to a backward (reverse) search.

Del ete Cancelsthe last character typed.

Crl+Q Quotes the next character typed.

Ctrl+wW Adds the next word under the cursor to the search string.
Alt+Crl+Y Adds the next form under the cursor to the search string.

Ctrl+Y Adds the remainder of the line under the cursor to the search string.
Alt+Y Adds the current kill string to the search string.

Crl+C Add the editor window's selected text to the search string.

65

3 Command Reference

Esc If the search string is empty, invokes a non-incremental search, otherwise exits the search,
leaving the current point at the last find.

arl +G Aborts the search, returning the current point to its original location.

If the search string cannot be found, cancelsthe last character typed (equivalent to Del et e).
Ret urn Exits the search, leaving the current point at the last find.

Al t +S Space

Toggle lax whitespace match. Seei sear ch- | ax- whi t espace for details.

incremental-search-minimum-visible-lines Editor Variable
Default value: 3

Determines the minimum of visible lines between an incremental search match and the closest window border (top or
bottom). If the point is closer to the border than the value, the point is scrolled to the center of the window.

Lines are counted from the start of the match, and the line where the match starts is included in the count.

Note that this has no effect when doing "fixed position" search (with numeric prefix), for example
Ctrl +U digit Ctrl +S, or if the window istoo short.

Setting the value to 0 makes incremental searching behave asin LispWorks 6.0 and earlier versions, that is the match can
be shown on the top or bottom line currently displayed in the window.

isearch-lax-whitespace

isearch-regexp-lax-whitespace

replace-lax-whitespace
replace-regexp-lax-whitespace Editor Variables

Default value: ni | .
Each of these variables controls the default state of lax whitespace match search in the respective operation:
* i search-1 ax-whi t espace controlslax whitespace match in ordinary (non-regexp) search.
* i search-regexp-| ax- whi t espace controls lax whitespace match in regular expression search.
* repl ace- | ax- whi t espace controlslax whitespace in query replace match with ordinary match.
* repl ace-regexp- | ax- whi t espace controls lax whitespace match in regular expression query replace.

In al cases, when the value of the variableisni | , then each space in the match string istreated like other ordinary
characters (normal match). If the variable is non-nil, a single space in the match string is effectively replaced by the
value of sear ch- whi t espace-r egexp, interpreted as aregular expression even the ordinary search and replace
operation (thisis called alax whitespace match). By default sear ch- whi t espace-r egexp isset to aregular
expression that matches any sequence of whitespace characters.

In regular expression search and query replace, aspaceisreplaced by sear ch- whi t espace-regexp only if itisnot in
a"special" position in the match. "Specia" positions are:

* Inside apair of square brackets ([.. .]).

» Immediately following abacksash (\).

66

3 Command Reference

* Immediately preceding one of question mark (?), star (*) or plus (+).

For incremental searches, the respective variable determines the initial state of lax whitespace match. You can toggle the
state on and off during an incremental search by typing Al t +S Space, which only affects the current operation.

search-whitespace-regexp Editor Variable
Default value: astring made from the 7 characters: #\[#\ Space #\Tab #\Return #\ New i ne #\] #\ +.

When lax whitespace match is on, the value of sear ch- whi t espace- r egexp is used to effectively replace any single
space in the match string.

Whether lax whitespace match ison is controlled by the variablesi sear ch- | ax- whi t espace,
i sear ch-regexp-| ax-whi t espace, r epl ace-| ax- whi t espace andr epl ace-r egexp- | ax- whi t espace.

Note that the value of sear ch- whi t espace- r egexp is awaysinterpreted as aregexp, including in the ordinary search
and replace operations.

Reverse Incremental Search Editor Command

Arguments: string
Key sequence: Ctrl +Rstring

Searches backward, starting from the current point, for the search string that is input, beginning the search as soon as
each character is provided. When amatch isfound for the search string, the current point is moved to the start of the
matched string. |f the search string is not found between the current point and the beginning of the buffer, an error is
signaled.

You can use afixed line position for the matches and/or modify the style used to display them, as described for
Incremental Search.

With a prefix argument p the matches are displayed at afixed line position, p lines below the top of the window.
Otherwise, the position of the matched string within the window is influenced by the editor variable
i ncrenent al - search-m ni mum vi si bl e-1i nes.

The search can be controlled by entering one of the following key sequences at any time during the search.

arl+R If the search string is empty, repeats the last incremental search, otherwise repeats a backward
search for the current search string.

If the search string cannot be found, starts the search from the end of the buffer (wrap-around

search).
arl+S Changesto aforward search.
Del et e Cancelsthe last character typed.
Esc If the search string is empty, invokes a non-incremental search, otherwise exits the search,

leaving the current point at the last find.
arl+G Aborts the search, returning the current point to its original location.

If the search string cannot be found, cancels the last character typed (equivalent to Del et e).

arl+Q Quotes the next character typed.

Forward Search Editor Command

Arguments: string
Key sequence: Ctrl +S Esc string

67

3 Command Reference

editor: forward-search-comrmand p &optional string the-point
The default for the-point is the current point.

Searches forwards from the-point for string. When amatch isfound, the-point is moved to the end of the matched string.
In contrast with Incremental Search, the search string must be terminated with a carriage return before any searching is
done. If an empty string is provided, the last search is repeated.

Records the starting location (see 3.10 L ocations).

Backward Search Editor Command

Arguments: string
Key sequence: None

edi tor:reverse-search-command p &optional string the-point
The default for the-point is the current point.

Searches backwards from the-point for string. When amatch isfound, the-point is moved to the start of the matched
string. In contrast with Rever se Incremental Sear ch, the search string must be terminated with a carriage return before
any searching isdone. If an empty string is provided, the last search is repeated.

Records the starting location (see 3.10 L ocations).

Rever se Search isasynonym for Backwar d Sear ch.

List Matching Lines Editor Command

Arguments: string
Key sequence: None

editor:list-matching-lines-comand p &optional string
Listsall lines after the current point that contain string, in a Matches window.

A prefix argument causes the appropriate number of lines before and after each matching line to be listed also.

Delete Matching Lines Editor Command

Arguments: string
Key sequence: None

edi tor: del et e- mat chi ng-1i nes-conmand p &optional string

Deletes dl lines after the current point that match string.

Delete Non-Matching Lines Editor Command

Arguments: string
Key sequence: None

edi tor: del et e- non- mat chi ng-1 i nes-conmand p &opti onal string

Deletes al lines after the current point that do not match string.

Search All Buffers Editor Command

Arguments: string
Key sequence: None

Searches all the buffersfor string. If only one buffer contains string, it becomes the current buffer, with the cursor

68

3 Command Reference

positioned at the start of the string. 1f more than one buffer contains the string, a popup window displays alist of those
buffers. A buffer may then be selected from thislist.

Buffers Search Editor Command

Arguments: search-string
Key sequence: None

The command Buf f er s Sear ch searches all opened buffers for search-string, displaying the first match.
Use the key sequence Al t +, to find subsequent occurrences of search-string.

Search Buffers Editor Command

Arguments: search-string
Key sequence: None

The command Sear ch Buf f er s searches all opened buffers using the Search Filestool.

It prompts for a string and then activates the Search Filestool in the Opened Buffers mode. See the Lisp\Works IDE User
Guide for adescription of the Search Filestool.

Directory Search Editor Command

Arguments: directory string
Key sequence: None

Searches source filesin directory for string. The current working directory is offered as a default for directory.

By default only fileswith suffix . I i sp, .1 sp,.c,.cpp or. h aresearched. A non-nil prefix argument causes al files
to be searched, except for those ending with one of the stringsin thelist syst em *i gnor abl e-fi |l e-suf fi ces*.

Di rectory Sear ch displaysthefirst match. Use the key sequence Al t +, to find subsequent occurrences of the search
string.

Search Files Editor Command

Arguments: search-string directory
Key sequence: Ctrl +X * search-string directory

Searches for astring in adirectory using a Search Files tool.

The command prompts for search-string and directory and then raises a Search Filestool. The configuration of the
Search Filestool controls which filesin the directory are searched. If the search string is not empty, it starts searching
automatically, unless a prefix argument is given.

See the LispWorks IDE User Guide for a description of the Search Files tool.

Search Files Matching Patterns Editor Command

Arguments: search-string directory patterns
Key sequence: Ctr| +X & search-string directory patterns

Searches for astring in files under a directory with names matching given patterns, using a Search Files tool.

The command prompts for search-string, directory and patterns, and raises a Search Files tool in Roots and Patterns
mode. If the search string is not empty, it starts searching automatically, unless a prefix argument is given.

patterns should be a comma-separated set of filename patterns delimited by braces. A pattern where the last component
does not contain * is assumed to be a directory onto which the Search Filestool adds its own filename pattern. patterns

69

3 Command Reference

defaultsto{*.lisp,*.lsp,*.c, *. h}.

See the LispWorks IDE User Guide for a description of the Search Files tool.

System Search Editor Command

Arguments. systemstring
Key sequence: None

Searches the files of system for string.

Matches are shown in editor buffers consecutively. Use the key sequence Al t +, to find subsequent definitions of the
search string.

Search System Editor Command

Arguments: search-string system
Key sequence: None

Prompts for search-string and system and then raises a Search Files tool in System Search mode, which displays the
search results and allows you to visit the files.

See the LispWorks IDE User Guide for a description of the Search Filestool.

default-search-kind Editor Variable

Default value: : string-insensitive

Defines the default method of searching. By default, all searching (including regexp searching, and replacing
commands) ignores case. If you want searching to be case-sensitive, the value of this variable should be set to
:string-sensitive using Set Variable.

It is also possible to search a set of files programmatically using the sear ch-fi | es function:

editor:search-files Function

editor:search-files &ey string files generator => ni |
search-fil es searchesall thefilesin alist for agiven string.
string is a string to search for (prompted if not given).
filesisalist of pathnames of files to search, and generator is afunction to generate the filesif none are supplied.

If amatch isfound thefileis displayed in a buffer with the cursor on the occurrence. Al t +-, makes the search continue
until the next occurrence.

search-fil es returnsnil .

For example:

(editor:search-files
:files "(".login" ".cshrc")
:string "alias")
3.23.2 Regular expression searching
The syntax of regular expressions in LispWorks is defined in 28.7 Regular expression syntax in the LispWorks® User Guide

and Reference Manual.

70

3 Command Reference

The following commands search using regular expressions.

Regexp Forward Search
Regexp Reverse Search Editor Commands

Arguments: string
Key sequence: None

Performs a forward or backward search for string using regular expressions. The search pattern must be terminated with
a carriage return before any searching is done. If an empty string is provided, the last regexp search is repeated.

Seedso: editor:regul ar - expressi on- sear ch.

ISearch Forward Regexp Editor Command

Arguments: string
Key sequence: Al t +Ctrl +S string

The command | Sear ch Forward Regexp performsincremental search forwards, using regular expression matching.

ISearch Backward Regexp Editor Command

Arguments; string
Key sequence: Al t +Ctr| +R string

The command | Sear ch Backward Regexp performsincremental search backwards, using regular expression
matching.

Count Occurrences Editor Command

Arguments:. None
Default binding: None

edi tor: count-occurrences-comand p &opti onal regexp

Counts the number of regular expression matches for the string regexp between the current point and the end of the
buffer.

Count Mat ches isasynonym for Count Cccurrences.

3.23.3 Replacement

Replace String Editor Command

Arguments: target replacement
Key sequence: None

edi tor:repl ace-string-comand p &opti onal target replacement
Replaces all occurrences of target string by replacement string, starting from the current point.

Whenever replacement is substituted for target, case may be preserved, depending on the value of the editor variable
case-repl ace.

Query Replace Editor Command

Arguments: target replacement
Key sequence: Al t +Shi f t +%target replacement

71

3 Command Reference

edi tor: query-repl ace-command p &opti onal target replacement

Replaces occurrences of target string by replacement string, starting from the current point, but only after querying the
user. Each time target isfound, an action must be indicated from the keyboard.

Whenever replacement is substituted for target, case may be preserved, depending on the value of the editor variable
case-repl ace.

The following key sequences are used to control Query Repl ace:

Space ory Replace target by replacement and move to the next occurrence of target.

Del ete Skip target without replacing it and move to the next occurrence of target.
Replace target by replacement and then exit.

! Replace all subsequent occurrences of target by replacement without prompting.

arl+R Enter recursive edit. This allows the current occurrence of target to be edited. When this editing
is completed, Exit Recur sive Edit should be invoked. The next instance of target is then found.
Esc Quit from Query Repl ace with no further replacements.
Directory Query Replace Editor Command

Arguments: directory target replacement
Key sequence: None

Replaces occurrences of target string by replacement string for each source file in directory, but only after querying the
user.

The current working directory is offered as a default for directory.

By default only fileswith suffix . | i sp, .1 sp,.c,.cpp or. h aresearched. A non-nil prefix argument causes all files
to be searched, except for those ending with one of the stringsinthelist syst em *i gnor abl e-fi | e-suf fi ces*.

Each timetarget is found, an action must be indicated from the keyboard. For details of possible actions see Query
Replace.
System Query Replace Editor Command

Arguments: system target replacement
Key sequence: None

Replaces occurrences of target string by replacement string, for each file in system, but only after querying the user.
Each timetarget is found, an action must be indicated from the keyboard. For details of possible actions see Query
Replace.

Buffers Query Replace Editor Command

Arguments: target replacement
Key sequence: None

The command Buf f ers Query Repl ace doesaquery replace operation on all opened buffers. See Query Replace
for details of the operation.

case-replace Editor Variable
Default value: t

If the value of thisvariableist , Replace String and Query Replace try to preserve case when doing replacements. If its

72

3 Command Reference

valueisni | , the case of the replacement string is as defined by the user.

Replace Regexp
Query Replace Regexp Editor Commands

Arguments: target replacement
Key sequence: None

edi tor:repl ace-regexp-comand p &opti onal target replacement
edi tor: query-repl ace-regexp-conmand p &optional target replacement
Replaces matches of target regular expression by replacement string, starting from the current point.

See 28.7 Regular expression syntax in the LispWorks® User Guide and Reference Manual for a description of regular
expressions.

Repl ace Regexp replacesall matches.

Query Repl ace Regexp asksthe user whether to replace each match in turn. Each time target is matched, an action
must be indicated from the keyboard.

See 28.7 Regular expression syntax in the LispWorks® User Guide and Reference Manual for a description of regular
expressions, and Query Replace for the keyboard gestures available.

When replacement containsa\ character, it has a special meaning. After each match, the Editor replaces al
occurrences of \ char in replacement by the an appropriate string as documented below, and uses the result as the
replacement string for this match. The character char following the Backslash must be one of:

& Use the string that matched the whole pattern.

Use astring that is the decimal representation of the number of matches that have already been
replaced in the current operation (first one will use 0).

\ Usethe single character string "\ \ ".

A non-zero digit Use the string that matched the corresponding \ (and\) pair in the pattern, starting from 1. The

pairs are counted by the order of appearance of the\ (in the pattern, so nested pairs have larger
numbers than their enclosing pairs.

For example, you can change dates in the form dd/ i yyyy to the form yyyy- nm dd by using:
target \([0-9][0-9]\)/\([0-9][0-9]\)/\([0-9][0-9][0-9][0-9]\)
replacement \3-\12-\1

This replaces, for example, 12/ 03/ 1979 by 1979- 03- 12.

Compatibility note: the special meaning of the Backslash character \ was introduced in LispWorks 7.0.

3.24 Comparison

This section describes commands which compare files, windows and/or buffers against each other.

Compare Windows Editor Command

Arguments. sourcel source2
Key sequence: None

73

3 Command Reference

Compares the text in the current window with the text of another window. The points are left where the text differs.
sourcel defaults to the current window. source2 defaults to the next ordinary window.

Differencesin whitespace are ignored by default, according to the value of conpar e- i gnor es- whi t espace.

Compare Buffers Editor Command

Arguments: buffer1 buffer2
Key sequence: None

Compares the text in the current buffer with that another buffer.
The first argument defaults to the current buffer. The second defaults to the next editor buffer.

Differencesin whitespace are ignored by default, according to the value of conpar e- i gnor es- whi t espace.

Compare File and Buffer Editor Command

Arguments. None
Key sequence: None

The command Corrpare Fil e And Buf f er compares thetext in the buffer with the text in the associated file, which is
displayed in another window if the text differs. The points are left where the texts differ.

If the buffer is not associated with afile, edi t or: edi t or-error iscalled.

compare-ignores-whitespace Editor Variable
Initial value: t

When true, the Compare Windows and Compar e Buffer s commands ignore mismatches due to differencesin
whitespace.

Diff Editor Command

Arguments: filel file2
Key sequence: None

Compares the current buffer with another file.
A prefix argument makes it compare any two files, prompting you for both filenames.

Diff Ignoring Whitespace Editor Command

Arguments: filel file2
Key sequence: None

Compares the current buffer with another file, like Diff but ignoring whitespace.

A prefix argument isinterpreted in the same way as by Diff.

3.25 Registers

Locations and regions can be saved in registers. Each register has a name, and reference to a previously saved register is by
means of its name. The name of aregister, which consists of asingle character, is case-insensitive.

74

3 Command Reference

Point to Register Editor Command

Arguments. name
Key sequence: Ctrl +X / name

Saves the location of the current point in aregister called name, where name is asingle character.

Save Positionisasynonymfor Point to Register.

Jump to Register Editor Command

Arguments. name
Key sequence: Ctrl +X J name

Moves the current point to alocation previously saved in the register called name.

Junp to Saved PositionandRegi ster to Point areboth synonymsfor Junp to Regi ster.

Kill Register Editor Command

Arguments. name
Key sequence: None

Killsthe register called name.

List Registers Editor Command

Arguments. None
Key sequence: None

Listsall existing registers.

Copy to Register Editor Command

Arguments: name
Key sequence: Ctrl +X X name

Saves the region between the mark and the current point to the register called name. Theregister is created if it does not
exist.

When a prefix argument is supplied, the region is also deleted from the buffer.

Put Regi ster isasynonymfor Copy to Register.

Append to Register Editor Command

Arguments. name
Key sequence: None

Appends the region between the mark and the current point to the value in the register called name, which must already
exist and contain aregion.

When a prefix argument is supplied, the region is also deleted from the buffer.

Prepend to Register Editor Command

Arguments: name
Key sequence: None

Prepends the region between the mark and the current point to the value in the register called name, which must aready

75

3 Command Reference

exist and contain aregion.
When a prefix argument is supplied, the region is also deleted from the buffer.

Insert Register Editor Command

Arguments. name
Key sequence: Ctrl +X Gnhame

Copies the region from the register called name to the current point.

CGet Regi ster isasynonymfor i nsert Register.

3.26 Modes

A buffer can be in two kinds of mode at once: major and minor. The following two sections give a description of each, along
with details of some commands which alter the modes.

In most cases, the current buffer can be put in a certain mode using the mode name as an Editor Command.

3.26.1 Major modes

The major modes govern how certain commands behave and how text is displayed. Major modes adapt a few editor
commands so that their use is more appropriate to the text being edited. Some movement commands are affected by the
major mode, asword, sentence, and paragraph delimiters vary with the mode. Indentation commands are very much affected
by the major mode (see 3.18 I ndentation).

Major modes available in the LispWorks editor are as follows:

» Fundamental mode. Commands behave in their most general manner, default values being used throughout where
appropriate.

» Text mode. Used for editing straight text and is automatically loaded if the file nameendsin. t xt, . t ext or. t x.

 Lisp mode. Used for editing Lisp programs and is automatically loaded if the filenameendsin. i sp, .| sp,
.lispworks,.slisp,.l,.ntl or.cl.

« Directory mode. Used for listing and operating on filesin adirectory, after invoking the List Directory command.
» Shell mode. Used for running interactive shells.
The major mode of most buffers may be altered explicitly by using the commands described bel ow.

By default, Lisp mode is the major mode whenever you edit afile with typel i sp (aswith several other file types). If you
have Lisp source code in files with another file type f oo, put aform likethisinyour . I i spwor ks file, adding your file
extension to the default set:

(editor:define-file-type-hook
("lispworks" "lisp" "slisp" "I"™ "lIsp"” "ncl" "cl" "foo")
(buffer type)
(decl are (ignore type))
(setf (editor:buffer-nmajor-node buffer) "Lisp"))

Fundamental Mode Editor Command

Arguments. None
Key sequence: None

76

3 Command Reference

Puts the current buffer into Fundamental mode.

Text Mode Editor Command

Arguments: None
Key sequence: None

Puts the current buffer into Text mode.

Lisp Mode Editor Command

Arguments. None
Key sequence: None

Puts the current buffer into Lisp mode. Notice how syntax coloring is used for Lisp symbols. Also the balanced
parentheses delimiting a Lisp form at or immediately preceding the cursor are highlighted, by default in green.

3.26.2 Minor modes

The minor modes determine whether or not certain actions take place. Buffers may be in any number of minor modes. No
command details are given here as they are covered in other sections of the manuals.

Minor modes available in the LispWorks editor are as follows:

» Overwrite mode. Each character that is typed overwrites an existing character in the text—see 3.17 Overwriting.

 Auto Fill mode. Lines are broken between words at the right hand margin automatically, so there is no need to type
Ret ur n at the end of each line—see 3.19 Filling.

» Abbrev mode. Allows abbreviation definitions to be expanded automatically—see 3.27 Abbreviations.

» Execute mode. Used by the Listener and Shell tools to make history commands available (see the LispWorks IDE User
Guide).

3.26.3 Default modes

default-modes Editor Variable
Default value: ("Fundamental™)

This editor variable contains the default list of modes for new buffers.

3.26.4 Defining modes

New modes can be defined using the def node function.

editor:defmode Function

edi t or: def nrode name &key setup-function syntax-table key-bindings no-redefine vars cleanup-function major-p
transparent-p precedence => ni |

Defines a new editor mode called name.

name is a string containing the name of the mode being defined. setup-function is afunction which sets up a buffer in
this mode. key-bindingsisaquoted list of key-binding directions. no-redefine is a boolean: if true, the mode cannot be
re-defined. The default value of no-redefineisni | . varsisaquoted list of editor variables and values. aliasesisa
quoted list of synonyms for name. cleanup-function is a function which is called upon exit from a buffer in this mode.

77

3 Command Reference

major-p is aboolean:; if true, the mode is defined as major, otherwise minor. The default value of major-pisni | .

By default, any mode defined is a minor one—specification of major-mode status is made by supplying atrue value for
major-p.

def node isessentially for the purposes of mode specification—not all of the essential definitions required to establish a
new Editor mode are made in adef node call. In the example, below, other required calls are shown.

key-bindings can be defined by supplying a quoted list of bindings, where abinding isalist containing as afirst element
the (string) name of the Editor command being bound, and as the second, the key binding description (see 6 Advanced
Features, for example key-bindings).

The state of Editor variables can be changed in the definition of amode. These are supplied as a quoted list vars of
dotted pairs, where the first element of the pair isthe (symbol) name of the editor variable to be changed, and the second
isthe new value.

Both setup-function and cleanup-function are called with the mode and the buffer locked. They can modify the buffer
itself, but they must not wait for anything that happens on another process, and they must not modify the made (for
example by setting a variable in the mode), and must not try to update the display.

As an example tet us define aminor mode, Foo. Foo has a set-up function, called set up- f oo- node. All fileswith
suffix . f oo invoke Foo-mode.

Hereisthe def node form:

(editor:defmode "Foo" :setup-function 'setup-foo-node)

The next piece of code makes. f oo files invoke Foo-mode:

(editor:define-file-type-hook ("foo") (buffer type)
(declare (ignore type))
(setf (editor:buffer-mnor-node buffer "Foo") t))

The next form defines the set-up function:

(defun setup-foo-node (buffer)
(setf (editor:buffer-mjor-node buffer) "Lisp")
(let ((pathnane (editor:buffer-pathname buffer)))
(unl ess (and pat hnane
(probe-fil e pathnane))

(editor:insert-string
(editor:buffer-point buffer)
(format nil ";;; -*- nmode :foo -*-~2%i n-package \"CL-USER\ ")~2%)))))

Now, any files with the suffix . f oo invoke the Foo minor mode when loaded into the Editor.

3.27 Abbreviations

Abbreviations (abbrevs) can be defined by the user, such that if an abbreviation istyped at the keyboard followed by aword
terminating character (such as Space or,), the expansion is found and used to replace the abbreviation. Typing can thereby
be saved for frequently used words or sequences of characters.

There are two kinds of abbreviations: global abbreviations, which are expanded in all magjor modes; and mode abbreviations,
which are expanded only in defined major modes.

Abbreviations (both global and mode) are only expanded automatically when Abbrev mode (a minor mode) is on. The default
isfor abbrev mode to be off.

78

3 Command Reference

All abbreviations that are defined can be saved in afile and reloaded during later editor sessions.

Abbrev Mode Editor Command

Arguments: None
Key sequence: None

Switches abbrev mode on if it is currently off, and off if it is currently on. Only when in abbrev mode are abbreviations
automatically expanded.
Add Mode Word Abbrev Editor Command

Arguments: abbrev
Key sequence: Ctrl +X Ctrl +A abbrev

Defines a mode abbreviation for the word before the current point.

A positive prefix argument defines an abbreviation for the appropriate number of words before the current point. A zero
prefix argument defines an abbreviation for all the text in the region between the mark and the current point. A negative
prefix argument del etes an abbreviation.

Inverse Add Mode Word Abbrev Editor Command

Arguments. expansion
Key sequence: Ctrl +X Ctrl +Hexpansion

Defines the word before the current point as a mode abbreviation for expansion.

Add Global Word Abbrev Editor Command

Arguments: abbrev
Key sequence: Ctrl +X + abbrev

Defines a global abbreviation for the word before the current point.

A positive prefix argument defines an abbreviation for the appropriate number of words before the current point. A zero
prefix argument defines an abbreviation for all the text in the region between the mark and the current point. A negative
prefix argument del etes an abbreviation.

Inverse Add Global Word Abbrev Editor Command

Arguments. expansion
Key sequence: Ctrl +X - expansion

Defines the word before the current point as a global abbreviation for expansion.

Make Word Abbrev Editor Command

Arguments: abbrev expansion mode
Key sequence: None

edi t or: make- wor d- abbr ev- cormand p &opti onal abbrev expansion mode
Defines an abbreviation for expansion without reference to the current point. The default value for mode is global.

Abbrev Expand Only Editor Command

Arguments: None
Key sequence: None

79

3 Command Reference

Expands the word before the current point into its abbreviation definition (if it has one). If the buffer is currently in
abbrev mode then thisis done automatically on meeting aword defining an abbreviation.
Word Abbrev Prefix Point Editor Command

Arguments: None
Key sequence: Al t +'

Allows the prefix before the current point to be attached to the following abbreviation. For example, if the abbreviation
val nisbound toval uati on, typingr e followed by Al t +' , followed by val n, resultsin the expansion
reval uati on.

Unexpand Last Word Editor Command

Arguments. None
Key sequence: None

Undoes the last abbreviation expansion. If this command istyped twice in succession, the previous abbreviation is
restored.

Delete Mode Word Abbrev Editor Command

Arguments: abbrev
Key sequence: None

edi t or: del et e- nnde- wor d- abbr ev- conmmrand p &opti onal abbrev mode

Deletes a mode abbreviation for the current mode. A prefix argument causes all abbreviations defined in the current
mode to be deleted.

The argument mode is the name of the mode for which the deletion isto be applied. The default is the current mode.

Delete Global Word Abbrev Editor Command

Arguments: abbrev
Key sequence: None

edi t or: del et e- gl obal - wor d- abbrev- command p &opti onal abbrev

Deletesaglobal abbreviation. A prefix argument causes all global abbreviations currently defined to be del eted.

Delete All Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Deletesall currently defined abbreviations, both global and mode.

List Word Abbrevs Editor Command

Arguments. None
Key sequence: None

Displaysalist of al the currently defined abbreviations in an Abbrev window.

Word Abbrev Apropos Editor Command

Arguments: search-string
Key sequence: None

edi t or: wor d- abbr ev- apr opos- cormand p &opti onal search-string

80

3 Command Reference

Displays alist of all the currently defined abbreviations which contain search-string in their abbreviation definition or
mode. Thelist is displayed in an Abbrev window.

Edit Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Allows recursive editing of currently defined abbreviations. The abbreviation definitions are displayed in an Edit Word
Abbrevs buffer, from where they can be can be added to, modified, or removed. This buffer can then either be saved to
an abbreviationsfile, or Define Word Abbrevs can be used to define any added or modified abbreviations in the buffer.
When editing is complete, Exit Recursive Edit should be invoked.

Write Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

editor:wite-word-abbrev-file-comand p &optional filename

Saves the currently defined abbreviationsto filename. If no file nameis provided, the default file name defined by the
editor variable abbr ev- pat hnane- def aul t s is used.

Append to Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

edi t or: append-t o- wor d- abbrev-fil e-command p &optional filename

Appends all abbreviations that have been defined or redefined since the last save to filename. If no file name is provided,
the default file name defined by the editor variable abbr ev- pat hnane- def aul t s isused.

abbrev-pathname-defaults Editor Variable

Default value: abbr ev. def ns

Defines the default file name for saving the abbreviations that have been defined in the current buffer.

Read Word Abbrev File Editor Command

Arguments: filename
Key sequence: None

edi tor:read-word-abbrev-file-command p &optional filename

Reads previously defined abbreviations from filename. The format of each abbreviation must be that used by Write
Word Abbrev Fileand Insert Word Abbrevs.

Insert Word Abbrevs Editor Command

Arguments: None
Key sequence: None

Insertsinto the current buffer, at the current point, alist of all currently defined abbreviations. Thisissimilar to Write
Word Abbrev File, except that the abbreviations are written into the current buffer rather than afile.

Define Word Abbrevs Editor Command

Arguments: None

8l

3 Command Reference

Key sequence: None

Defines abbreviations from the definition list in the current buffer. The format of each abbreviation must be that used by
Write Word Abbrev File and Insert Word Abbrevs.

3.28 Keyboard macros

Keyboard macros enable a sequence of commands to be turned into a single operation. For example, if it isfound that a
particular sequence of commands is to be repeated a large number of times, they can be turned into a keyboard macro, which
may then be repeated the required number of times by using Prefix Arguments.

Note that keyboard macros are only available for use during the current editing session.

Define Keyboard Macro Editor Command

Arguments: None
Key sequence: Ctrl +X Shi ft +(

Begins the definition of a new keyboard macro. All the commands that are subsequently invoked are executed and at the
same time combined into the newly defined macro. Any text typed into the buffer is also included in the macro. The
definition is ended with End Keyboard Macro, and the sequence of commands can then be repeated with L ast
Keyboard Macro.

End Keyboard Macro Editor Command

Arguments. None
Key sequence: Ctrl +X Shift+)

Ends the definition of a keyboard macro.

Last Keyboard Macro Editor Command

Arguments: None
Key sequence: Ctrl +X E

Executes the last keyboard macro defined. A prefix argument causes the macro to be executed the required number of
times.
Name Keyboard Macro Editor Command

Arguments: name
Key sequence: None

edi t or: nane- keyboar d- macr o- cormand p &opti onal name

Makes the last defined keyboard macro into a command called name that can subsequently be invoked by means of
Extended Command.

Keyboard Macro Query Editor Command

Arguments: action
Key sequence: Ctrl +X Qaction

During the execution of a keyboard macro, this command prompts for an action. It istherefore possible to control the
execution of keyboard macros while they are running, to asmall extent.

The following actions can be used to control the current macro execution.

Space Continue with thisiteration of the keyboard macro and then proceed to the next.

82

3 Command Reference

Del et e Skip over the remainder of thisiteration of the keyboard macro and proceed to the next.

Escape Exit from this keyboard macro immediately.

3.29 Echo area operations

There are arange of editor commands which operate only on the Echo Area (that is, the buffer where the user typesin
commands).

Although in many cases the key bindings have a similar effect to the bindings used in ordinary buffers, thisisjust for the
convenience of the user. In fact the commands that are invoked are different.

3.29.1 Completing commands

Many of the commands used in the Editor are long, in the knowledge that the user can use completion commands in the Echo
Area, and so rarely hasto type awhole command name. Details of these completion commands are given below.

Complete Input Editor Command

Arguments. None
Key sequence: Tab
Mode: Echo Area

Completesthe text in the Echo Area as far as possible, thereby saving the user from having to type in the whole of along
file name or command. Use Tab Tab to produce a popup list of al possible completions.

Complete Field Editor Command

Arguments: None
Key sequence: Space
Mode: Echo Area

Completes the current part of the text in the Echo Area. So, for acommand that involves two or more words, if
Conpl et e Fi el d isused when part of the first word has been entered, an attempt is made to complete just that word.

Confirm Parse Editor Command

Arguments. None
Key sequence; Ret urn
Mode: Echo Area

Terminates an entry in the Echo Area. The Editor then triesto parse the entry. If Ret ur n istyped in the Echo Areawhen

nothing is being parsed, or the entry is erroneous, an error is signaled.

Help on Parse Editor Command

Arguments. None
Key sequence: ? or Help or F1
Mode: Echo Area

Displays apopup list of al possible completions of the text in the echo area.

83

3 Command Reference

3.29.2 Repeating echo area commands

The Echo Area commands are recorded in a history ring so that they can be easily repeated. Details of these commands are
given below.

Previous Parse Editor Command

Arguments. None
Key sequence: Al t +P
Mode: Echo Area

Movesto the previous command in the Echo Area history ring. If the current input is not empty and the contents are

different from what is on the top of the ring, then thisinput is pushed onto the top of the ring before the new input is
inserted.

Next Parse Editor Command

Arguments: None
Key sequence: Al t +N
Mode: Echo Area

Moves to the next most recent command in the Echo Area history ring. If the current input is not empty and the contents
are different from what is on the top of the ring, then thisinput is pushed onto the top of the ring before the new input is

inserted.
Find Matching Parse Editor Command

Arguments. match-input-string
Key sequence: Al t +R
Mode: Echo Area

The command Fi nd Mat chi ng Par se searches for a previous input containing match-input-string, and replaces the
current input with it.

3.29.3 Movement in the echo area

Echo Area Backward Character Editor Command

Arguments: None
Key sequence: Ctrl +B
Mode: Echo Area

Moves the cursor back one position (without moving into the prompt).

Echo Area Backward Word Editor Command

Arguments. None
Key sequence: Al t +B
Mode: Echo Area

Moves the cursor back one word (without moving into the prompt).

Beginning of Parse Editor Command

Arguments: None
Key sequence; Al t +<
Mode: Echo Area

3 Command Reference

Moves the cursor to the location immediately after the prompt in the Echo Area.

Beginning of Parse or Line Editor Command

Arguments: None
Key sequence: Cirl +A
Mode: Echo Area

Moves the cursor to the location at the start of the current line in multi-line input, or to the location immediately after the
prompt in the Echo Area.

3.29.4 Deleting and inserting text in the echo area

Echo Area Delete Previous Character Editor Command

Arguments: None
Key sequence: Backspace
Mode: Echo Area

Deletes the previous character entered in the Echo Area.

Echo Area Kill Previous Word Editor Command

Arguments. None
Key sequence: Al t +Backspace
Mode: Echo Area

Kills the previous word entered in the Echo Area.

Kill Parse Editor Command

Arguments. None
Key sequence: CGtrl +C Ctrl +U
Mode: Echo Area

Kills the whole of the input so far entered in the Echo Area.

Insert Parse Default Editor Command

Arguments: None
Key sequence: Ctrl +C Ctrl +P
Mode: Echo Area

I nserts the default value for the parse in progress at the location of the cursor. It isthereby possible to edit the default.
Simply typing Ret ur n selects the default without any editing.

Return Default Editor Command

Arguments. None
Key sequence: Gtrl +C Ctrl +R
Mode: Echo Area

Uses the default value for the parse in progress. Thisisthe same as issuing the command I nsert Par se Default and then
pressing Ret ur n immediately.

Insert Selected Text Editor Command

Arguments. None

85

3 Command Reference

Key sequence: Ctrl +C Cirl +C
Mode: Echo Area

Inserts the editor window's selected text in the echo area.

3.29.5 Display of information in the echo area

What Cursor Position Editor Command

Arguments: None
Key sequence: Ctrl +X =
Mode: Echo Area

Displays in the echo area the character under the point and the column of the point.

See also: Toggle Showing Cursor Info.

Where Is Point Editor Command

Arguments: None
Key sequence: None

Displays in the echo areathe position of the current point in terms of charactersin the buffer, as afraction of current
point position over total buffer length.

Toggle Showing Cursor Info Editor Command

Arguments. None
Key sequence: None

The command Toggl e Showi ng Cursor | nf o switches on or off display of cursor info in the echo area.

When display of cursor info ison, the info is updated whenever the cursor moves.

Theinfo contains the character at the cursor position, its Unicode code point, position in the buffer, and column. Itisthe

same information that is given by What Cursor Position.

3.29.6 Leaving the echo area

Reset Echo Area Editor Command

Arguments: None
Key sequence: Al t +K
Mode: Echo Area

The command Reset Echo Ar ea resets the echo area, which means aborting any prompting ("recursive edit") and
moving the focus to the main editor pane.

3.30 Editor variables

Editor variables are parameters which affect the way that certain commands operate. Descriptions of editor variables are
provided alongside the relevant command details in this manual. See also 6.3.15 Editor variables for programmatic use of
editor variables.

86

3 Command Reference

Show Variable Editor Command

Arguments: variable
Key sequence: None

Indicates the value of variable.

Set Variable Editor Command

Arguments: variable value
Key sequence: None

Allows the user to change the value of variable.

3.31 Recursive editing

Recursive editing occurs when you are allowed to edit text while an editor command is executing. The mode line of the
recursively edited buffer is enclosed in square brackets. For example, when using the command Query Replace, theCt r| +R
option can be used to edit the current instance of the target string (that is, enter arecursive edit). Details of commands used to
exit arecursive edit are given below.

Exit Recursive Edit Editor Command

Arguments. None
Key sequence: Al t+Ctrl +Z

Exitsalevel of recursive edit, returning to the original command. An error issignaled if not in arecursive edit.

Abort Recursive Edit Editor Command

Arguments. None
Key sequence: Ctrl +]

Aborts alevel of recursive edit, quitting the unfinished command immediately. An error issignaled if not in arecursive
edit.

3.32 Key bindings

The commands for modifying key bindings that are described below are designed to be invoked explicitly during each session
with the Editor. If the user wishes to create key bindings which are set up every session, the function edi t or : bi nd- key
should be used—see 6.1 Customizing default key bindings.

Bind Key Editor Command

Arguments: command key-sequence bind-type
Key sequence: None

Binds command (full command names must be used) to key-sequence.
After entering command, enter the keys of key-sequence and press Ret ur n.

bind-type can be either buffer, global or mode. If a bind-type of buffer or mode is selected, the name of the buffer or
mode required must then be entered. When a bind-type of buffer is selected, the current buffer is offered as a defaullt.
The default value for bind-type is"Global".

Unless a bind type of global is selected, the scope of the new key binding is restricted as specified. Generally, most key
bindings are global. Note that the Echo Areais defined as a mode, and some commands (especially those involving

87

3 Command Reference

completion) are restricted to the Echo Area.

Bind String to Key Editor Command

Arguments: string key-sequence bind-type
Key sequence: None

Make key-sequence insert string.
After entering string, enter the keys of key-sequence and press Ret ur n.
bind-type isinterpreted asin Bind Key.

Delete Key Binding Editor Command

Arguments: key-sequence bind-type
Key sequence: None

Removes a key binding, so that the key sequence no longer invokes any command. The argument bind-type can be either
buffer, global or mode. If abind-type of buffer or mode is selected, the name of the buffer or mode required must then
be entered. The default value for bind-typeis"Global".

It is necessary to enter the kind of binding, because a single key sequence may sometimes be bound differently in
different buffers and modes.

lllegal Editor Command

Arguments. None
Key sequence: None

Signals an editor error with the message "Illegal command in the current mode" accompanied by abeep. It is sometimes
useful to bind key sequences to this command, to ensure the key sequence is not otherwise bound.

Do Nothing Editor Command

Arguments. None
Key sequence: None

Does nothing. Thisistherefore similar to Illegal, except that there is no beep and no error message.
3.33 Execute mode

3.33.1 Listener commands

Use these commands in the Listener tool.

Beginning of Line After Prompt Editor Command

Arguments. None
Key sequence; Ctrl +A
Mode: Execute

The command Begi nni ng of Line After Pronpt movesthe current point to the beginning of the current line,
unless there is a prompt, in which case the point is moved to the end of the prompt.

With a prefix argument p, the point is moved to the beginning of the line p lines below the current line.

88

3 Command Reference

Insert from Previous Prompt Editor Command

Arguments. None
Key sequence: Ctrl +J
Mode: Execute

Thecommand | nsert From Previ ous Pronpt picksup the form starting from the previous prompt and yanksit to
the end of the buffer.

Inspect Star Editor Command

Arguments: None
Key sequence: Ctrl +C Ctrl +l
Mode: Execute

Thecommand | nspect St ar inspects the object that is the value of the symbol cl : *, which is normally the result of
the previous command. |nspecting means activating the Inspector tool with the object.

See the LispWorks IDE User Guide for information about the Inspector tool.

Execute or Insert Newline or Yank from Previous Prompt Editor Command

Arguments: None
Key sequence: Ret urn
Mode: Execute

The command Execute or Insert New ine or Yank from Previ ous Pronpt doesone of the actions
indicated by its name, depending on the position of the point relative to the prompt.

If the current point is after or in the middle of the last prompt, insert a newline at the end of the buffer, and if thereisan
acceptable form after the last prompt, execute it.

If the point is before the last prompt, insert the command before the point at the end of the buffer, and move the point to
the end of the buffer.

Throw to Top Level Editor Command

Arguments: None
Key sequence: Al t +K
Mode: Execute

The command Throw To Top Level exitsthe reading of commands, prints a prompt and starts reading again.

Note: thiscommand is useful after you mistakenly pasted alarge amount of text into the listener, and you cannot really
see where the prompt is.

3.33.2 History commands

Use these commands in the Listener and Shell tools.

History First Editor Command

Arguments: None
Key sequence: Ctrl +C <
Mode: Execute

Thecommand Hi st ory Fi rst replacesthe current command by the first recorded command in the history of
commands in the current page.

89

http://www.lispworks.com/documentation/HyperSpec/Body/a_st.htm

3 Command Reference

Note: the length of the history islimited to 100, so earlier commands are not available.

History Last Editor Command

Arguments: None
Key sequence: Ctrl +C >
Mode: Execute

Thecommand Hi st ory Last replacesthe current command by the last recorded command in the history of commands
in the current page.

History Next Editor Command

Arguments. None
Key sequence: Al t+Nor Crl +C Cirl +N

Mode: Execute
The command Hi st ory Next replacesthe current command by the next one from the history of commandsin the
current page.

History Previous Editor Command

Arguments: None
Key sequence: Alt+PorCrl +C Cirl +P
Mode: Execute

The command Hi st ory Previ ous replaces the current command by the previous one from the history of commandsin
the current page.

If immediately follows History Search From Input, it does the search again.

History Search Editor Command

Arguments: search-string
Key sequence; Al t +Ror Ctrl +C C rl +R search-string
Mode: Execute

The command Hi st ory Sear ch searches for a previous command containing a supplied string, and replaces the
current command with it.

History Kill Current Editor Command

Arguments: None
Key sequence: Ctrl +C Ctrl +K
Mode: Execute

Thecommand Hi story Kill Current deletesthe current command, that isthe text after the last prompt.
Note: thiscommand is badly named. It has nothing to do with history.

History Search from Input Editor Command

Arguments: search-string
Key sequence: None

Thecommand Hi st ory Search From | nput searchesfor a previous command containing the string entered so far,
and replaces the current command with it.

Repeated uses step back to previous matches.

90

3 Command Reference

If no string has been entered, the command prompts for a string to match like History Sear ch.

History Select Editor Command

Arguments: None
Key sequence: Ctrl +C Cirl +F

Mode: Execute
The command Hi st ory Sel ect opensamenu of the previous commands, and replaces the current command with the
selection.

History Yank Editor Command

Arguments. None
Key sequence: Gtrl +C Ctrl +Y
Mode: Execute

The command Hi st ory Yank inserts the previous command into the current one.

3.33.3 Debugger commands

These commands are applicable only inacapi : | i st ener - pane (including listener panes in the Debugger and I nspector
tools and so on), when in the debugger. Each has a corresponding short debugger command that you can enter at the
debugger prompt. These are listed in the description.

The debugger prompt by default looks like this:

CL-USER 3 : 1 >

The first integer is the number of commands entered in the listener. The second integer is the number of levels deep in the
debugger (that is, if it is 2 or more, you have entered the debugger recursively).

Debugger Abort Editor Command

Arguments. None

Key sequence: Al t +A
Mode: Execute
Debugger command: : a

The command Debugger Abort aborts, meaning invoking the restart that is recognized asthecl : abort restart.

Debugger Continue Editor Command

Arguments: None

Key sequence: Al't +C
Mode: Execute
Debugger command: : ¢

The command Debugger Cont i nue continues, meaning invoking the restart that is recognized asthecl : cont i nue
restart.

Debugger Backtrace Editor Command

Arguments: None

Key sequence: Al t +B

Mode: Execute

Debugger command: : bqg or : bb (approximately)

91

http://www.lispworks.com/documentation/HyperSpec/Body/a_abort.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_contin.htm

3 Command Reference

The command Debugger Backt r ace displays a quick backtrace when in the debugger in alistener window.

A prefix argument makes the backtrace more verbose.

Debugger Edit Editor Command

Arguments:. None

Key sequence: Al t +E
Mode: Execute
Debugger command: : ed

The command Debugger Edi t triesto find the source of the current frame, and if successful displays that sourcein an
Editor tool.

Debugger Next Editor Command

Arguments: None

Key sequence: Al t +N
Mode: Execute
Debugger command: : n

The command Debugger Next makes the next frame current.

Enter : v (Debugger Print) to see the value in the frame.

Debugger Previous Editor Command

Arguments: None

Key sequence: Al t +P
Mode: Execute
Debugger command: : p

The command Debugger Previ ous makesthe previous frame current.

Enter : v (Debugger Print) to see the value in the frame.

Debugger Print Editor Command

Arguments. None

Key sequence: Al t +V
Mode: Execute
Debugger command: : v

The command Debugger Pri nt displaysthe current frame.
Debugger Top Editor Command
Arguments: None

Key sequence: None
Debugger command: : t op

The command Debugger Top abortsto the top level.

Throw out of Debugger Editor Command

Arguments. None
Key sequence: None

The command Thr ow out of Debugger isdeprecated, use Debugger Top and Debugger Abort instead.

92

3 Command Reference

3.34 Running shell commands

The editor alows both single MS DOS commands to be executed and al so provides a means of running a shell interactively.

3.34.1 Running shell commands directly from the editor

Shell Command Editor Command

Arguments: command
Key sequence: Al t +! command

The command Shel | Conmand runs the console (MS DOS) command command. The output from the command is
displayed in a Shell Output buffer.

A prefix argument causes the output from the shell command to be sent to the * t er i nal - i o* stream rather than the
Shell Output buffer.

Shell Command on Region Editor Command

Arguments: command
Key sequence: Al t +] command

The command Shel | Command On Regi on runsthe console (MS DOS) command command with the text in the
current region as input (by redirection of the standard input), and shows the output.

Without a prefix argument, the output is inserted into the Shell Output buffer (which is created if it does not exist). With
aprefix argument, the contents of the region are replaced by the output.

Run Command Editor Command

Arguments: command
Key sequence: None

Executes the single shell command command in a Shell window. When the command terminates, the subprocessis
closed down.

3.34.2 Invoking and using a Shell tool

See a'so the history commands in 3.33 Execute mode.

Shell Editor Command
Arguments: None
Key sequence: None
Opens a Shell window which allows the user to run a shell interactively.

The major mode of the buffer is Shell mode - the variables and key bindings described in this section apply. The minor
mode of the buffer is Execute mode so the history key bindings (see 3.33 Execute mode) can also be used in the Shell
window.

Whenever the working directory is changed within the shell, the editor attempts to keep track of these changes and
update the default directory of the Shell buffer. When a shell command is issued beginning with a string matching one of
the editor variablesshel | - cd-r egexp, shel | - pushd- r egexp or shel | - popd- r egexp, the editor recognizes this
command as a change directory command and attempt to change the default directory of the Shell buffer accordingly. If
you have your own aliases for any of the shell change directory commands, alter the value of the appropriate variable.
For example, if thevalue of shel | - cd- r egexp is" cd" and the shell command cd C: \ t enp isissued, the next time the

93

http://www.lispworks.com/documentation/HyperSpec/Body/v_termin.htm

3 Command Reference

editor command Wfind Fileisissued, the default directory offered isC: \ t enp. If you find that the editor has not
recognized a change directory command then the editor command cd may be used to change the default directory of the
buffer.

shell-shell Variable
This variable overrides the default shell used for Shell tools. It defaultsto ni |, which causes the shell to be chosen as
documented in 24.4 Configuring the shell to run in the LispWorks IDE User Guide.

Remote Shell Editor Command

Arguments: machine-name
Key sequence: None

The command Renot e Shel | prompts for a machine name and then starts a shell which tries to login to that computer
usingr sh.

Note: Renot e Shel | does not work on Microsoft Windows.

CD Editor Command

Arguments: directory
Key sequence: None
Mode: Shell

Changes the directory associated with the current buffer to directory. The current directory is offered as a default.

shell-cd-regexp Editor Variable

Default value: " cd"
Mode: Shell

A regular expression that matches the shell command to change the current working directory.

shell-pushd-regexp Editor Variable
Default value: " pushd"
Mode: Shell

A regular expression that matches the shell command to push the current working directory onto the directory stack.

shell-popd-regexp Editor Variable

Default value: " popd"
Mode: Shell

A regular expression that matches the shell command to pop the current working directory from the directory stack.

prompt-regexp-string Editor Variable
Default value: " [*#$%
1*[#$%] *"
Mode: Shell

The regexp used to find the prompt in a Shell window. Thisvariableis also used in the Listener.

Interrupt Shell Subjob Editor Command

Arguments. None
Key sequence: Ctrl +C Cirl +C

94

3 Command Reference

Mode: Shell

Sends an interrupt signal to the subjob currently being run by the shell. Thisis equivalent to issuing the shell command
Crl +C

Note: this command does not work on Microsoft Windows.

Stop Shell Subjob Editor Command

Arguments: None
Key sequence: Cirl +C Cir |l +Z
Mode: Shell

Sends a stop signal to the subjob currently being run by the shell. Thisis equivalent to issuing the shell command
Crl+Z.

Note: this command does not work on Microsoft Windows.

Shell Send Eof Editor Command

Arguments: None
Key sequence: Ctrl +C Ctrl +D
Mode: Shell

Sends an end-of-file character (Ct r | +D) to the shell, causing either the shell or its current subjob to finish.
Note: this command does not work on Microsoft Windows.

Kill Shell Subjob Editor Command

Arguments: None
Key sequence: None

Thecommand Ki I 1 Shel | Subj ob triesto kill the subjob in the shell.

At the time of writing, on Solarisit actually sendsa Sl GKI LL signal. On other Unix platformsit sends the VQUI T
characters. On Microsoft Windowsiit calls Ter ni nat ePr ocess.

Terminate Shell Subjob Editor Command

Arguments. None
Key sequence: None

The command Ter mi nat e Shel | Subj ob triesto kill the subjob in the shell.

At the time of writing, on Solarisit actually sendsa Sl GTERMsignal. On other Unix platformsit sendsthe VQUI T
characters. On Microsoft Windowsiit calls Ter mi nat ePr ocess.

3.35 Buffers, windows and the mouse

3.35.1 Buffers and windows

You can transfer text between LispWorks Editor buffers and ordinary windows using the commands described bel ow.

Copy to Cut Buffer Editor Command

Arguments: None
Key sequence: None

95

3 Command Reference

Copies the current region to the Cut buffer. The contents of the buffer may then be pasted into awindow using the
standard method for pasting.

Insert Cut Buffer Editor Command

Arguments: None
Key sequence: None

I nserts the contents of the Cut buffer at the current point. You can put text from awindow into the Cut buffer using the
standard method for cutting text (usually by holding the left mouse button while dragging the mouse).

3.35.2 Actions involving the mouse

The functions to which the mouse buttons are bound are not true Editor Commands. As such, the bindings cannot be
changed. Details of mouse button actions are given below.

Note that marks may also be set by using editor key sequences—see 3.9 Marks and regions—but also note that aregion
must be defined either by using the mouse or by using editor key sequences, as the region may become unset if a
combination of the two isused. For example, using Ct r | +Space to set amark and then using the mouse to go to the start of
the required region unsets the mark.

left-button Moves the current point to the position of the mouse pointer.

shift-left-button In Emacs emulation, this moves the current point to the location of the mouse pointer and sets the
mark to be the end of the new current form or comment line.

control-shift-left-button

Invokes the Editor Command Save Region, saving the region between the current point and the
mark at the top of the kill ring. If the last command wascontrol -shift-1eft-button,the
Editor Command Kill Region isinvoked instead. This allows one click to save the region, and
two clicks to save and kill it.

middle-button If your mouse has amiddle button, it pastes the current selection at the location of the mouse
pointer.
right-button Brings up a context menu, from which a number of useful commands can be invoked. The

options include Cut, Copy, and Paste.

shift-right-button Inserts the form or comment line at the location of the mouse pointer at the current point.

3.36 Interaction with the GUI and the IDE

Activate Interface Editor Command

Arguments: interface-title
Key sequence: Ctrl +; interface-title

Thecommand Acti vat e | nt erface promptsfor aninterfacetitle of an interface in the IDE, and activates it.

Note: this command works only in the LispWorks IDE.

Set Title Editor Command

Arguments: title
Key sequence: None

The command Set Ti t | e setsthetitle of the enclosing interface.

96

3 Command Reference

Note: switching buffersin the editor resets the title which will overwrite user changes, but other tool windows in the
LispWorks IDE normally do not set their title.

Invoke Tool Editor Command

Arguments: None
Key sequence: Cirl +#

Invokes atool in the LispWorks IDE.

Firstly I nvoke Tool promptsfor acharacter. If you enter a known shortcut character, the corresponding tool is
activated. If the character is unknown, it raises the Tools menu so you can select fromit.

If you enter the character for the Listener (1) or Editor (e), and the current tool is already a Listener or Editor
respectively, then the tool is toggled between its main tab and the Output tab. This gives a convenient way to toggle
between the main tab and the Output tab without using the mouse.

Notes:

1. The shortcut characters can be seen in the Tools menu. So if you do not know the shortcut character, you can enter '?
to get the menu, and then note the shortcut character.

2. If the tool does not already exist, oneis created if needed.

3. I nvoke Tool doesnothingin adelivered image.

Invoke Menu ltem Editor Command

Arguments. menu-item-path
Key sequence: None

The command | nvoke Menu |t eminvokesamenu item, asif the item was activated in any of the usual interactive
ways.

The user is asked for a path, which isthe title of the menu in the menu bar of the current interface, followed by the
title(s) of submenusiif any, followed by the item title itself.

Thetitles must be separated by a/ (forward slash) and optionally Space or Tab characters, and other than this they must
match (case-insensitive) the string that appears on the screen. For example, to do File > Open..., the menu-item-path is:

file / open...

Build Application Editor Command

Arguments. None
Key sequence: None

The command Bui | d Appl i cat i on invokes the Application Builder in the LispWorks IDE and does a build. By
default, it uses the current buffer as the build script. If aprefix argument is supplied it prompts for afile to use as the
build script.

See also: LispWorks IDE User Guide, Application Builder chapter.

Build Interface Editor Command

Arguments: interface-name
Key sequence: None

The command Bui | d | nt er f ace prompts for an interface name, and then activates the Interface Builder tool with it.

97

3 Command Reference

See dlso: LispWorks IDE User Guide, Interface Builder chapter.

Edit Compiler Warnings Editor Command

Arguments: None
Key sequence: None

The command Edit Conpi | er War ni ngs opens and activates the Compilation Conditions Browser, if thereisa
record of compilation conditionsin the session.

Conditions may be generated whenever compiling code in the IDE.

See also: LispWorks IDE User Guide, Compilation Conditions Browser chapter.

Inspect Variable Editor Command

Arguments: editor-variable-name
Key sequence: None

The command | nspect Vari abl e activates the Inspector tool with the object that is the value of the supplied editor
variable.

List Buffer Definitions Editor Command

Arguments: None
Key sequence: None

The command Li st Buffer Definitions switchesto the Buffers tab in an Editor tool.

Grep Editor Command

Arguments. grep-args
Key sequence: None

The command G- ep activates the Search Files tool with a grep command.

It prompts for command line arguments, which should comprise the entire command line except for the first word gr ep.
Then it activates the Search Files tool and invokes the grep command.

If the prefix argument is supplied, it saves all files after prompting and before activating the tool.

Note: the grep command to useis configurable vial w. * gr ep- command*. On Unix gr ep isavailable by default. On
Microsoft Windows LispWorks uses| i b/ 8- 1- 0- 0/ et c/ gr ep. exe by default.

See also: Search Files, Search Files Matching Patterns, Search System.

Next Search Match Editor Command

Arguments. None
Key sequence: Ctrl +X °

The command Next Sear ch Mat ch displays the next match from the last search in the Search Filestool.

Next Grep Editor Command

Arguments: None
Key sequence: None

The command Next Gr ep is deprecated, use Next Search M atch instead.

98

3 Command Reference

Show Directory Editor Command

Arguments: path
Key sequence: None

The command Show Di r ect or y opensthe native file browser.

If no prefix argument is supplied and the current buffer is associated with a pathname, the browser is opened with this
pathname. Otherwise, it prompts for a path to use.

Note: On Windows and macOS, if it isafull filename, the fileis selected. On other platformsit only opens the browser
with the directory. On GTK+ it triesto use nautilus and if thisis not on the path, it fails.

Report Bug Editor Command

Arguments: None
Key sequence: None

The command Report Bug opens awindow containing the template for reporting bugs in LispWorks. This template
can then befilled in and emailed to Lisp Support.

Report Manual Bug Editor Command

Arguments. None
Key sequence: None

The command Report Manual Bug opensawindow containing the template for reporting bugs in the LispWorks
documentation. Thistemplate can then befilled in and emailed to Lisp Support.

Bug Report Editor Command

Arguments:. None
Key sequence: None

The command Bug Report isanaiasfor Report Bug.

Exit Lisp Editor Command

Arguments: None
Key sequence: None

Thecommand Exi t Li spisanaliasfor Save All Files and Exit.

3.37 Miscellaneous

break-on-editor-error Editor Variable
Default value: ni |
Specifieswhether an edi t or : edi t or - er r or signalsaLisp error, or whether it just displays a message in the Echo
Area.

Room Editor Command

Arguments: None
Key sequence: None

Displays information on the current status of the memory allocation for the host computer.

99

3 Command Reference

Toggle Showing Line Numbers Editor Command

Arguments. None
Key sequence: None

Toggl e Showi ng Li ne Number s toggles whether line numbers are shown in the current window. The actual
appearance of the line numbersis controlled from the CAPI side by the initargs for capi : edi t or - pane or by
capi : edi t or - pane-set -1 i ne- nunber s- appear ance.

Note: Showing line numbers requires that the current buffer counts newlines, which most buffers do. When toggling
turns on line numbers, it ensures that the current buffer counts newlines. However, switching to a buffer that does not
count newlines, which happens when the buffer is very large, does not ensure counting newlines. If you want to seeline
numbersin such a buffer, you need to use the command Toggle Count Newlines to switch counting newlines on in the
current buffer. Note that this slows the display (which iswhy it is not done automaticaly).

3.38 Obscure commands

This section documents commands that we believe are unlikely to be useful. If you do find a use for any of these, please tell
us at Lisp Support.

Clear Undo Editor Command

Arguments. None
Key sequence: None

The command Cl ear Undo clears undo information in the current buffer, after prompting the user for confirmation.

See dso: Undo.

List Faces Display Editor Command

Arguments. None
Key sequence: None

The command Li st Faces Di spl ay creates an editor buffer and displaysin it al known editor faces.

Clear Eval Record Editor Command

Arguments. None
Key sequence: None

The command Cl ear Eval Recor d deletestherecord of compilation and evaluation in the current buffer. This record
is used by the Stepper to find the source code.

Redo Editor Command

Arguments: None
Key sequence: None

The command Redo redoes the last undone change. It operates only with simple Undo/Redo selected (see Toggle Global
Simple Undo).

See also: Toggle Global Simple Undo.

Toggle Global Simple Undo Editor Command

Arguments: None
Key sequence: None

100

3 Command Reference

The command Toggl e A obal Si npl e Undo toggles the type of undo between simple Undo/Redo and the Emacs-
style of undo.

With a positive prefix argument smple Undo/Redo is selected, and with a zero or negative prefix argument Emacs-style
undo is selected.

Note: the setting is global, that isit affects all editor buffers.
See also: Undo.

Flush Sections Editor Command

Arguments. None
Key sequence: None

The command Fl ush Sect i ons flushesinformation about the definitionsin the current buffer gathered by sectioning,
to force the editor to recomputeit.

101

4 Editing Lisp Programs

There are awhole set of editor commands designed to facilitate editing of Lisp programs. These commands are designed to
understand the syntax of the Lisp language and therefore allow movement over Lisp constructs, indentation of code,
operations on parentheses and definition searching. Lisp code can also be evaluated and compiled directly from the editor.

To use some of these commands the current buffer should be in Lisp mode. For more information about editor modes, see
3.26 Modes.

Commands are grouped according to functionality.

4.1 Automatic entry into Lisp mode
Some source files begin with aline of thisform:

-*- Mode: Common-Lisp; Author: mnouse -*-

or this;

-*- Mode: Lisp; Author: mnouse -*-

A buffer is automatically set to be in Lisp mode when such afileis displayed.

Alternatively, if you have files of Common Lisp code with extension other than . | i sp, add the following code to your
. I'i spwor ks file, substituting the extensions shown for your own. This ensures that Lisp mode is the major mode whenever
afilewith one of these extensionsis viewed in the editor:

(editor:define-file-type-hook
("lispworks" "lisp" "slisp" "el" "Isp" "ntl" "cl")
(buffer type)
(declare (ignore type))
(setf (editor:buffer-mjor-node buffer) "Lisp"))

Another way to make a Lisp mode buffer is the command New Buffer, and you can put an existing buffer into Lisp mode via
the command Lisp Mode.

4.2 Syntax coloring

When in Lisp mode, the LispWorks editor provides automatic Lisp syntax coloring and parenthesis matching to assist the
editing of Lisp programs.

You can ensure a buffer isin Lisp mode as described in 4.1 Automatic entry into Lisp mode.

To modify the colors used in Lisp mode syntax coloring, use Preferences... > Environment > Styles > Colors And Attributes
as described in the LispWorks IDE User Guide. Adjust the settings for the styles whose names begin with "Lisp".

Commands controlling syntax coloring have names commencing Font Lock, for example Font L ock Fontify Buffer.

102

4 Editing Lisp Programs

Font Lock Fontify Block Editor Command

Arguments. None
Key sequence: None

The command Font Lock Fontify Bl ock fontifies some linesthe way Font L ock Fontify Buffer would. Thelines
could be a Lisp definition, a paragraph, or a specified number of lines.

If aprefix argument is supplied, Font Lock Fontify Bl ock fontifiesthat many lines before and after the current
point. If no prefix argument is supplied and the editor variable f ont - | ock- mar k- bl ock-f uncti onisni | it fontifies
16 lines before and after. If no prefix argument is supplied and f ont - | ock- mar k- bl ock-f uncti on isnon-nil, itis
used to delimit the region to fontify.

Font Lock Fontify Buffer Editor Command

Arguments. None
Key sequence: None

The command Font Lock Fontify Buffer fontifiesthe current buffer.

Font Lock Mode Editor Command

Arguments: None
Key sequence: None

The command Font Lock Mbde sets Font Lock mode.

Without a prefix argument it switches Font Lock mode on and off. With a prefix argument it sets Font Lock mode on
when the argument is positive and off otherwise.

Global Font Lock Mode Editor Command

Arguments. message
Key sequence: None

Thecommand @ obal Font Lock Mbde switches Globa Font Lock mode on and off.

With a prefix argument it turns Global Font Lock mode on if and only if the argument is positive.

If message is non-nil the command displays a message saying whether Font Lock mode is on or off.
It returns the new status of Global Font Lock mode (non-nil means on).

When Global Font Lock mode is enabled, Font Lock mode is automatically turned on for modes that support it, which
currently isonly Lisp mode.
font-lock-mark-block-function Editor Variable

Default value: 1i sp-font -1 ock- mar k- bl ock-functi on
Mode: Lisp

The editor variablef ont - | ock- mar k- bl ock- f uncti on if non-nil is afunction used by Font Lock Fontify Block to
delimit the region to fontify.

The default value in Lisp mode delimits the current Lisp definition.
See also: Font Lock Fontify Block.

103

4 Editing Lisp Programs

4.3 Functions and definitions

4.3.1 Movement, marking and specifying indentation

Beginning of Defun Editor Command

Arguments:. None
Key sequence: Al t +Cirl +A

Moves the current point to the beginning of the current top-level form. A positive prefix argument p causes the point to
be moved to the beginning of the form p forms back in the buffer.

End of Defun Editor Command

Arguments: None
Key sequence: Al t+Ctrl +E

Moves the current point to the end of the current top-level form. A positive prefix argument p causes the point to be
moved to the end of the form p forms forward in the buffer.

Mark Defun Editor Command

Arguments. None
Key sequence: Al t+Ctrl +H

Puts the mark at the end of the current top-level form and the current point at the beginning of the form. The definition
thereby becomes the current region. If the current point isinitially located between two top-level forms, then the mark
and current point are placed around the previous top-level form.

Defindent Editor Command

Arguments: no-of-args
Key sequence: None

Defines the number of arguments of the operator to be specially indented if they fall on anew line. The indent is defined
for the operator name, for example def un.

Def i ndent affectsthe specia argument indentation for all forms with that operator which you subsequently indent.

4.3.2 Definition searching

Definition searching involves taking a name (of amacro, variable, editor command, and so on), and finding the actual
definition. Thisis particularly useful in large systems, where code may exist in alarge number of source files.

Definitions are found by using information provided either by LispWorks source recording or by a Tagsfile. If source records
or Tagsinformation have not been made available to LispWorks, then the following commands do not work. To make the
information available to LispWorks, set the variable dspec: *act i ve-fi nder s* appropriately. See the Lisp\Works® User
Guide and Reference Manual for details.

Source records are created if the variable *r ecor d- sour ce-fi | es* istrue when definitions are compiled, evaluated or
loaded. Seethe LispWorks® User Guide and Reference Manual for details.

Tag information is set up by the editor itself, and can be saved to afile for future use. For each filein adefined system, the
tag file contains a relevant file name entry, followed by names and positions of each defining form in that file. Before tag
searching can take place, there must exist a buffer containing the required tag information. You can specify a previously
saved tag file as the current tag buffer, or you can create a new one using Create Tags Buffer. GNU Emacs tag files are fully
compatible with LispWorks editor tag files.

104

http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm

4 Editing Lisp Programs

After acommand such as Al t +. (Find Source), if there are multiple definitions repeated use of Al t +, (Continue Tags
Search) finds them in turn. If you then wish to revisit a particular definition, try the commands Go Back and Select Go
Back.

Find Source Editor Command

Arguments: name
Key sequence: Al t +. name

Triesto find the source code for name. The symbol under the current point is offered as a default value for name. A
prefix argument automatically causes this default value to be used.

If the source code for nameisfound, thefile in which it is contained is displayed in a buffer. When there is more than
one definition for name, Fi nd Sour ce findsthefirst definition, and Al t +, (Continue Tags Sear ch) finds subsequent
definitions.

Fi nd Sour ce searches for definitions according to the value of dspec: *act i ve- fi nder s*. You can control which
source record information is searched, and the order in which these are searched, by setting this variable appropriately.
See the LispWorks® User Guide and Reference Manual for details. There is an example setting for this variable in the
configuration files supplied.

If dspec: *acti ve-finders* containsthevalue: t ags, Fi nd Sour ce prompts for the name of atagsfile, and thisis
used for the current and subsequent searches.

The found source is displayed according to the value of edi t or : *sour ce- f ound- act i on*. This depends on the
buffer with the found definition being in Lisp mode. For information on how to ensure this for particular file types, see
4.1 Automatic entry into Lisp mode.

Find Source For Dspec Editor Command

Arguments: dspec
Key sequence: None

This command is similar to Find Sour ce, but takes a definition spec dspec instead of a name as its argument.

For example, given ageneric function f oo of one argument, with methods specializing on classesbar and baz:

Fi nd Source for Dspec foo

will find each method definition in turn (with the continuation via Al t +,) whereas:

Fi nd Source for Dspec (nethod foo (bar))
finds only the definition of the method on bar .

Find Command Definition Editor Command

Arguments: command
Key sequence: None

This command is similar to Find Sour ce, but takes the name of an editor command, and tries to find its source code.

Except in the Personal Edition, you can use this command to find the definitions of the predefined editor commands. See
13.7 Finding source code in the LispWorks® User Guide and Reference Manual for details.

See dso: Find Key Definition.

105

4 Editing Lisp Programs

Edit Editor Command Editor Command

Arguments: command
Key sequence: None

Thisisasynonym for Find Command Definition.

Find Key Definition Editor Command

Arguments: keys
Key sequence: Ctrl +H Ctrl +S keys

The command Fi nd Key Defi nition promptsfor akey sequence keys, and finds the source code definition of the
editor command (if any) that is bound to it.

See also; Find Command Definition.

Find Source For Current Package Editor Command

Arguments: None
Key sequence: None

Thiscommand is similar to Find Source, but finds the def package definition for the package at the current point. If a
prefix argument is given, it first prompts for a package name.

View Source Search Editor Command

Arguments: function
Key sequence: None

Shows the results of the latest source search (initiated by Find Source or Find Source for Dspec or Find Command
Definition) in the Find Definitions view of the Editor. See the chapter on the Editor tool in the LispWorks IDE User
Guide for more information about the Find Definitions view.

List Definitions Editor Command

Arguments. name
Key sequence: None

List the definitions for name. The symbol under the current point is offered as a default value for name. A prefix
argument automatically causes this default value to be used.

This command searches for definitions and shows the results in the Find Definitions view of the Editor tool instead of
finding the first definition. It does not set up the Al t +, action.

See the chapter on the Editor tool in the LispWorks IDE User Guide for more information about the Find Definitions
view.

List Definitions For Dspec Editor Command

Arguments: dspec
Key sequence: None

Thiscommand issimilar to List Definitions, but takes a definition spec dspec instead of a name asits argument.

This command searches for definitions and shows the results in the Find Definitions view of the Editor tool instead of
finding the first definition. This command does not set up the Al t +, action.

See the chapter on the Editor tool in the LispWorks IDE User Guide for more information about the Find Definitions
view.

106

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpkg.htm

4 Editing Lisp Programs

Create Tags Buffer Editor Command

Arguments. None
Key sequence: None

Creates a buffer containing Tag search information, for al the. | i sp filesin the current directory. If you want to use this
information at alater date then save this buffer to afile (preferably afile called TAGS in the current directory).

The format of the information contained in this buffer is compatible with that of GNU Emacs tags files.

A prefix argument causes the user to be prompted for the name of afile containing alist of files, to be used for
constructing the tags table.

Find Tag Editor Command
Key sequence: Al t +?

Triesto find the source code for a name containing a partial or complete match a supplied string by examining the Tags
information indicated by the value of dspec: *acti ve-fi nders*.

The text under the current point is offered as a default value for the string.

If the source code for amatch isfound, the filein which it is contained is displayed. When there is more than one
definition, Fi nd Tag findsthefirst definition, and Al t +, (Continue Tags Sear ch) finds subsequent definitions.

The found source is displayed according to the value of edi t or : *sour ce- f ound- acti on*.

If there is no tags information indicated by the value of dspec: *acti ve-fi nders*, Fi nd Tag prompts for the name
of atagsfile. The default isafile called TAGS in the current directory. If there is no such file, you can create one using
Create Tags Buffer. If you want to search a different directory, specify the name of atagsfilein that directory.

See the chapter on the DSPEC package in the LispWorks® User Guide and Reference Manual for information on how to
usethedspec: *act i ve-fi nder s* variable to control how this command operates. Thereis an example setting for
this variable in the configuration files supplied.

See also Find Source, Find Source for Dspec and Create Tags Buffer.

Tags Search Editor Command
Key sequence: None

Exhaustively searches each file mentioned in the Tags files indicated by the value of dspec: *acti ve-fi nders* fora
supplied string string. Note that this does not merely search for definitions, but for any occurrence of the string.

If string isfound, it isdisplayed in a buffer containing the relevant file. When there is more than one definition,
Tags Sear ch findsthefirst definition, and Al t +, (Continue Tags Search) finds subsequent definitions.

If thereisno Tagsfileondspec: *acti ve-fi nders*, Tags Sear ch promptsfor the name of atagsfile. The default
isafile caled TAGS in the current directory. If thereisno such file, you can create one using Create Tags Buffer. If you
want to search a different directory, specify the name of atagsfilein that directory.

Continue Tags Search Editor Command

Arguments. None
Key sequence: Al t +,

Searches for the next match in the current search. This command isonly applicableif issued immediately after aFind
Sour ce, Find Source for Dspec, Find Command Definition, Edit Callers, Edit Callees, Find Tag or Tags Search
command.

107

4 Editing Lisp Programs

Tags Query Replace Editor Command
Key sequence: None

Allows you to replace occurrences of a supplied string target by a second supplied string replacement in each Tags file
indicated by the value of dspec: *acti ve-fi nders*.

Each timetarget is found, an action must be specified from the keyboard. For details of the possible actions see Query
Replace.

If thereisno Tagsfileindicated by dspec: *acti ve-fi nders*, Tags Query Repl ace promptsfor the name of a
tagsfile. The default isafile called TAGS in the current directory. If thereis no such file, you can create one using
Create Tags Buffer.

Visit Tags File Editor Command
Key sequence: None

Prompts for a Tags file file and makes the source finding commands use it. Thisis done by modifying, if necessary, the
value of dspec: *acti ve-fi nders*.

If fileisaready indspec: *act i ve- fi nder s*, thiscommand does nothing.

If there are other Tagsfilesindicated then Vi sit Tags Fi | e prompts for whether to add ssmply add file as the last
element of dspec: *acti ve-fi nder s*, or to save the current value of dspec: *act i ve- fi nder s* and start a new
list of active finders, setting dspec: *acti ve-fi nder s* tothenew value (: i nt er nal file). Inthiscase, the previous
active finderslist can be restored by the command Rotate Active Finders.

If thevalue: t ags appearsonthelist dspec: *acti ve-fi nder s* then file replacesthisvaluein thelist.

If thereisno tagsinformation indicated then Vi sit Tags Fi | e simply addsfile as the last element of
dspec: *active-finders*.

Rotate Active Finders Editor Command
Key sequence: Al t +Ctrl +.

Rotates the active finders history, activating the least recent one. This modifies the value of
dspec: *active-finders*.

The active finders history can have length greater than 1 if Visit Tags File started anew list of active finders, or if a
buffer associated with a TAGS fileon dspec: *act i ve-fi nder s* wasKkilled.

Visit Other Tags Fileisasynonymfor Rotate Active Finders.

4.3.3 Tracing functions

The commands described in this section use the Common Lisp t r ace facility. Note that you can switch tracing on and off
using dspec: t r aci ng- enabl ed- p - seethe LispWorks® User Guide and Reference Manual for details of this.

Trace Function Editor Command

Arguments: function
Key sequence: None

This command traces function. The symbol under the current point is offered as a default value for function. A prefix
argument automatically causes this default value to be used.

108

http://www.lispworks.com/documentation/HyperSpec/Body/m_tracec.htm

4 Editing Lisp Programs

Trace Function Inside Definition Editor Command

Arguments: function
Key sequence: None

Thiscommand is like Trace Function, except that function is only traced within the definition that contains the cursor.

Untrace Function Editor Command

Arguments: function
Key sequence: None

This command untraces function. The symbol under the current point is offered as a default value for function. A prefix
argument automatically causes this default value to be used.
Trace Definition Editor Command

Arguments. None
Key sequence: None

This command traces the function defined by the current top-level form.

Trace Definition Inside Definition Editor Command

Arguments:. None
Key sequence: None

This command is like Trace Definition, except that with a non-nil prefix argument, prompts for a symbol to trace. Also,
it prompts for a symbol naming a second function, and traces the first only inside this.

Untrace Definition Editor Command

Arguments: None
Key sequence: None

This command untraces the function defined by the current top-level form.

Untrace All Editor Command

Arguments. None
Key sequence: None

The command Unt r ace Al | untraces all traced definitions.

Break Function Editor Command

Arguments: function
Key sequence: None

Thiscommand is like Trace Function but the traceiswith : br eak t so that when function is entered, the debugger is
entered.

Break Function on Exit Editor Command

Arguments: function
Key sequence: None

Thiscommand is like Trace Function but the trace iswith : br eak- on-exi t t so that when acaled to function exits,
the debugger is entered.

109

4 Editing Lisp Programs

Break Definition Editor Command

Arguments. None
Key sequence: None

Like Trace Definition but the definition istraced with : br eak t.

Break Definition on Exit Editor Command

Arguments: None
Key sequence: None

Like Trace Definition but the definition is traced with : br eak- on-exit t.

4.3.4 Function callers and callees

The commands described in this section, require that LispWorks is producing cross-referencing information. This
information is produced by turning source debugging on while compiling and loading the relevant definitions (see
t oggl e- sour ce- debuggi ng in the LispWorks® User Guide and Reference Manual).

List Callers Editor Command
Arguments. dspec
Key sequence: None

Produces a Function Call Browser window showing those functions that call the definition named by dspec. The name of
the current top-level definition is offered as a default value for dspec. A prefix argument automatically causes this
default value to be used.

See 7 Dspecs. Tools for Handling Definitionsin the LispWorks® User Guide and Reference Manual for a description of
dspecs.

List Callees Editor Command
Arguments: dspec
Key sequence: None

Produces a Function Call Browser window showing those functions that are called by the definition named by dspec.
The name of the current top-level definition is offered as a default value for dspec. A prefix argument automatically
causes this default value to be used.

See 7 Dspecs: Tools for Handling Definitionsin the LispWorks® User Guide and Reference Manual for a description of
dspecs.
Show Paths To Editor Command

Arguments: dspec
Key sequence: None

Produces a Function Call Browser window showing the callers of the definition named by dspec. The name of the

current top-level definition is offered as a default value for dspec. A prefix argument automatically causes this default
value to be used.

See 7 Dspecs: Tools for Handling Definitionsin the LispWorks® User Guide and Reference Manual for a description of
dspecs.

110

4 Editing Lisp Programs

Show Paths From Editor Command

Arguments: dspec
Key sequence: None

Produces a Function Call Browser window showing the function calls from the definition named by dspec. The name of
the current top-level definition is offered as a default value for dspec. A prefix argument automatically causes this default
value to be used.

See 7 Dspecs: Tools for Handling Definitionsin the LispWorks® User Guide and Reference Manual for a description of
dspecs.

Edit Callers Editor Command

Arguments: function
Key sequence: None

Produces an Editor window showing the latest definition found for afunction that calls function. The name of the current
top-level definition is offered as a default value for function. A prefix argument automatically causes this default value
to be used. The latest definitions of each of the other functionsthat call function are available viathe Continue Tags
Search command.

Edit Callees Editor Command

Arguments: function
Key sequence: None

Produces an Editor window showing the latest definition found for afunction called by function. The name of the current
top-level definition is offered as a default value for function. A prefix argument automatically causes this default value
to be used. The latest definitions of each of the other functions that are called by function are available viathe Continue
Tags Search command.

4.3.5 Indentation and Completion

Indent Selection or Complete Symbol Editor Command

Arguments. None
Key sequence: Tab
Mode: Lisp

Does Lispindentation if there isavisible region. Otherwise, it attempts to indent the current line. If the current lineis
aready indented correctly then it attempts to complete the symbol before the current point. See Complete Symbol for
more details.

The prefix argument, if supplied, isinterpreted asif by Indent Selection or Complete Symbol.

Indent or Complete Symbol Editor Command

Arguments. None
Key sequence: None

Attemptsto indent the current line. If the current line is already indented correctly then it attempts to complete the
symbol before the current point. See Complete Symbol for more details.

The prefix argument, if supplied, isinterpreted asif by Indent or Complete Symbol.

111

4 Editing Lisp Programs

Complete Symbol Editor Command

Arguments. None
Key sequence: Al t +Ctr | +l

Attempts to complete the text before the current point to a symbol. If the string to be completed is not unique, alist of
possible completions is displayed.

If the Use in-place completion preferenceis selected then the completions are displayed in a window which allows most
keyboard gestures to be processed as ordinary editor input. This allows speedy reduction of the number of possible
completions, while you can select the desired completion with Ret ur n, Up and Down.

If aprefix argument is supplied then only symbols which are bound or fbound are offered amongst the possible
completions.

Abbreviated Complete Symbol Editor Command

Arguments: None
Key sequence: Al t +I

Attempts to complete the symbol abbreviation before the current point. If the string to be completed is not unique, alist
of possible completionsis displayed.

A symbol abbreviation is a sequence of words (sequences of aphanumeric characters) separated by connectors
(seguences of non-al phanumeric, non-whitespace characters). Each word (connector) is a prefix of the corresponding
word (connector) in the expansions. Thusif you complete the symbol abbreviation w- o then wi t h- open-fil e and
wi t h- open- st r eamare amongst the completions offered, assuming the COMMON- LI SP package isvisible.

If the Use in-place completion preferenceis selected then the completions are displayed in awindow which allows most
keyboard gestures to be processed as ordinary editor input. This allows speedy reduction of the number of possible
completions, while you can select the desired completion with Ret ur n, Up and Down.

If aprefix argument is supplied then only symbols which are bound or fbound are offered amongst the possible
completions.

4.3.6 Miscellaneous

Buffer Changed Definitions Editor Command

Arguments. None
Key sequence: None

Calculates which definitions have been changed in the current buffer during the current LispWorks session, and displays
these in the Changed Definitions tab of the Editor tool.

By default the reference point against which changes are calculated is the time when the file was last read into the buffer.
A prefix argument equal to the value of the editor variable pr ef i x- ar gunent - def aul t means the reference point is
the last evaluation. A prefix argument of 1 means the reference point is the time the buffer was last saved to file.

Note: the most convenient way to use this command is via the Editor tool. Switch it to the Changed Definitions tab,
where you can specify the reference point for calculating the changes.

Function Arglist Editor Command

Arguments: function
Key sequence: Al t += function

Prints the arguments expected by function in the Echo Area. The symbol under the current point is offered as a default

112

http://www.lispworks.com/documentation/HyperSpec/Body/m_w_open.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_w_op_1.htm

4 Editing Lisp Programs

value for function. A prefix argument automatically causes this default value to be used.

Example code showing how to use this command to display argument lists automatically is supplied with LispWorks:

(exanple-edit-file "editor/comrands/ space-showarglist")

Function Argument List Editor Command

Arguments; function
Key sequence: Ctrl +Shi ft +Afunction

The command Functi on Argunent Li st isamore sophisticated version of Function Arglist which works on the
current form rather than the current symbol.

The symbol at the head of the current form is offered as a default value for function, unless that symbol is a member of
thelistedi tor: *fi nd-1i kel y-function-ignores* inwhich case the second symbol in the formis offered as the
default. A prefix argument automatically causes this default value to be used.

Function Arglist Displayer Editor Command

Arguments: None
Key sequence: Cirl +

Shows or hides information about the operator in the current form. The command controls display of a special window
(displayer) on top of the editor. The displayer shows the operator and its arguments, and tries to highlight the current
argument (that is, the argument at the cursor position). If it does not recognize the operator of the current form, it tries
the surrounding form, and if that failsit tries athird level of surrounding form.

While the displayer isvisible:
Crl++ Moves the displayer up.
Ctrl+- Moves the displayer down.

You can dismiss the displayer by invoking the command again, or by entering Ct r | +G. On Cocoa and Windowsitis
dismissed automatically when the underlying pane loses the focus.

In the LispWorks IDE you can change the style of the highlighting by Preferences... > Environment > Styles > Colors
and Attributes > Arglist Highlight.

Additionally, while the displayer isvisible:
Crl+/ Controls whether the documentation string of the operator is also shown.

Lastly, if passed a prefix argument, for example by typing Gt r | +U Ctrl +° then it displays the operator and its
arguments, with highlight, in the Echo Area, rather than a displayer window. This Echo Areadisplay isinterface-
specific, and implemented only for the Editor and other tools based on the editor.

Describe Class Editor Command

Arguments: class
Key sequence: None

Displays a description of the class named by classin a Class Browser tool. The symbol under the current point is offered
as adefault value for class. A prefix argument automatically causes this default value to be used.

Describe Generic Function Editor Command

Arguments: function
Key sequence: None

113

4 Editing Lisp Programs

Displays a description of function in a Generic Function Browser tool. The symbol under the current point is offered asa
default value for function. A prefix argument automatically causes this default value to be used.
Describe Method Call Editor Command

Arguments: None
Key sequence: None

Displays a Generic Function Browser tool, with a specific method combination shown.

When invoked with a prefix argument p while the cursor isin adef net hod form, it uses the generic function and
specializers of the method to choose the method combination.

Otherwise, it prompts for the generic function name and the list of specializers, which can be class names or lists of the
form (eql object) where object is not evaluated.

Describe System Editor Command

Arguments. system
Key sequence: None

Displays a description of the def syst emrdefined system named by system. The symbol under the current point is
offered as a default value for system. A prefix argument automatically causes this default value to be used.

4.4 Forms

4.4.1 Movement, marking and indentation

Forward Form Editor Command

Arguments: None
Key sequence: Al t+Ctrl +F

Moves the current point to the end of the next form. A positive prefix argument causes the point to be moved the
required number of forms forwards.
Backward Form Editor Command

Arguments: None
Key sequence: Al t +Ctrl +B

Moves the current point to the beginning of the previous form. A positive prefix argument causes the point to be moved
the required number of forms backwards.

Mark Form Editor Command

Arguments. None
Key sequence: Al t+Ctirl +@

Puts the mark at the end of the current form. The current region is that area from the current point to the end of form. A
positive prefix argument puts the mark at the end of the relevant form.

Indent Form Editor Command

Arguments: None
Key sequence: Al t +Ctrl +Q

If the current point is located at the beginning of aform, the whole form is indented in a manner that reflects the

114

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

4 Editing Lisp Programs

structure of the form. This command can therefore be used to format a whole definition so that the structure of the
definition is apparent.

Seeeditor: *indent-with-tabs* for control over theinsertion of #\ Tab characters by this and other indentation
commands.

4.4.2 Killing forms

Forward Kill Form Editor Command

Arguments: None
Key sequence: Al t +Ctr | +K

Kills the text from the current point up to the end of the current form. A positive prefix argument causes the rel evant
number of formsto be killed forwards. A negative prefix argument causes the relevant number of formsto be killed
backwards.

Backward Kill Form Editor Command

Arguments. None
Key sequence: Al t +Ct r| +Backspace

Kills the text from the current point up to the start of the current form. A positive prefix argument causes the relevant
number of formsto be killed backwards. A negative prefix argument causes the relevant number of forms to be killed
forwards.

Kill Backward Up List Editor Command

Arguments: None
Key sequence: None

Killsthe form surrounding the current form. The cursor must be on the left parenthesis of the current form. The entire
affected areais pushed onto the kill-ring. A prefix argument causes the relevant number of surrounding lists to be
removed.

For example, given the following code, with the cursor on the second left parenthesis:
(print (do-sone-work 1 2 3))
Kill Backward Up List would kill the outer form leaving this:

(do-sone-work 1 2 3)

Also available through the function edi t or : ki | | - backwar d- up- | i st - command.

Extract List isasynonymforKill Backward Up Li st.

4.4.3 Macro-expansion of forms

Macroexpand Form Editor Command

Arguments: None
Key sequence: Ctrl +Shift+M

Macro-expands the form after the current point. The output is sent to the Output window. A prefix argument causes the
output to be displayed in the current buffer.

115

4 Editing Lisp Programs

Walk Form Editor Command
Arguments. None
Key sequence: Al t +Shi ft +M

Produces a macroexpansion of the form after the current point. The output is sent to the Output window. A prefix
argument causes the output to be displayed in the current buffer.

Note: Wal k For mdoes not expand the Common Lisp macros cond, pr og, prog* and nul ti pl e- val ue- bi nd,
though it does expand their subforms.

4.4.4 Miscellaneous

Transpose Forms Editor Command

Arguments: None
Key sequence: Al t+Ctrl +T

Transposes the forms immediately preceding and following the current point. A zero prefix argument causes the forms at
the current point and the current mark to be transposed. A positive prefix argument causes the form at or preceding the
current point to be transposed with the form the relevant number of forms forward. A negative prefix argument causes
the form at or preceding the current point to be transposed with the form the relevant number of forms backward.

Insert Double Quotes For Selection Editor Command

Arguments. None
Key sequence: Al t +"

Inserts a pair of double-quotes around the selected text, if any. If there is no selected text and a prefix argument pis
supplied, insert them around the p following (or preceding) forms. Otherwise insert them at the current point. The point
is left on the character after the first double-quote.

4.5 Lists

4.5.1 Movement

Forward List Editor Command

Arguments. None
Key sequence: Al t +Ctrl +N

Moves the current point to the end of the current list. A positive prefix argument causes the point to be moved the
required number of lists forwards.

Backward List Editor Command

Arguments: None
Key sequence: Al t+Ctrl +P

Moves the current point to the beginning of the current list. A positive prefix argument causes the point to be moved the
required number of lists backwards.

Forward Up List Editor Command
Arguments. None

116

http://www.lispworks.com/documentation/HyperSpec/Body/m_cond.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_prog_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_prog_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_multip.htm

4 Editing Lisp Programs

Key sequence: None

Moves the current point to the end of the current list by finding the first right parenthesis that is not matched by an left
parenthesis after the current point.
Backward Up List Editor Command

Arguments. None
Key sequence: Al t +Ctrl +U

Moves the current point to the beginning of the current list by finding the first left parenthesis that is not matched by a
right parenthesis before the current point.

Down List Editor Command

Arguments: None
Key sequence: Alt+Ctrl +D

Moves the current point to alocation down one level in the current list structure. A positive prefix argument causes the
current point to be moved down the required number of levels.

4.6 Comments

Comment Region Editor Command

Arguments: None
Key sequence: None

The command Conment Regi on comments or uncomments a region according to the mode and prefix argument.

This command has an effect only if the corment - begi n variableis set. By default, corment - begi nissetinthe Lisp,
IDL and C modes.

The commented region is the current region, extended to the beginning of the line where the region starts and the end of
the line where it ends.

If the prefix argument is positive, it determines the number of repetitions of the corment - begi n string when the length
of conment - begi n isone, asin Lisp mode. When conment - begi n islonger, the prefix argument isignored.

If the prefix argument isni | , asingle character comrent - begi n is repeated three times.

If the default prefix argument is supplied (i.e. no integer is given to Set Prefix Argument), the region is uncommented.

If the prefix argument is negative, that number of repetitions of comment - begi n are deleted.

Set Comment Column Editor Command

Arguments: None
Key sequence: Cirl +X ;

Sets the comment column to the current column. A positive prefix argument causes the comment column to be set to the
value of the prefix argument.

The valueis held in the editor variable conment - col um.

Indent For Comment Editor Command

Arguments: None
Key sequence: Al t +;

117

4 Editing Lisp Programs

Creates anew comment or moves to the beginning of an existing comment, indenting it appropriately (see Set Comment
Column).

If the current point isin aline aready containing a comment, that comment isindented as appropriate, and the current
point is moved to the beginning of the comment. An existing double semicolon comment is aligned as for aline of code.
An existing triple semicolon comment or a comment starting in column O, is not moved.

A prefix argument causes comments on the next relevant number of lines to be indented. The current point is moved
down the relevant number of lines.

If characters not associated with the comment extend past the comment column, a space is added before starting the
comment.

Insert Multi Line Comment For Selection Editor Command

Arguments. None
Key sequence: Al t +#

Inserts multi line comment syntax around the selected text, if any. If thereis no selected text and a prefix argument pis
supplied, inserts them around p following (or preceding) forms. Otherwise it inserts them at the current point. The point
isleft on the first character inside the comment.

Uncomment Multi Line Comment Editor Command

Arguments: None
Key sequence: None

Removes multi line comment syntax around the current point.

Up Comment Line Editor Command

Arguments. None
Key sequence: Al t +P

Movesto the previous line and then performs an | ndent for Comment.

Down Comment Line Editor Command

Arguments. None
Key sequence: Al t +N

Movesto the next line and then performs an I ndent for Comment.

Indent New Comment Line Editor Command

Arguments: None
Key sequence: Al t +J
Key sequence: Al t +Newl i ne

Ends the current comment and starts a new comment on the next line, using the indentation and number of comment start
characters from the previous line's comment. If | ndent New Comment Li ne is performed when the current point is
not in acomment line, it simply actsasaRet ur n.

Kill Comment Editor Command

Arguments. None
Key sequence: Al t +Ctrl +;

Kills the comment on the current line and moves the current point to the next line. If thereis no comment on the current
line, the point is simply moved onto the next line. A prefix argument causes the comments on the relevant number of

118

4 Editing Lisp Programs

lines to be killed and the current point to be moved appropriately.

The comment isidentified by matching against the value of conmrent - st art .

comment-begin Editor Variable

Default value: " ; "
Mode: Lisp

When the valueis a string, it isinserted to begin a comment by commands like I ndent for Comment and I ndent New
Comment Line.

comment-start Editor Variable

Default value: " ; "
Mode: Lisp

A string that begins a comment. When the valueisa string, it isinserted to start acomment by commands like I ndent
New Comment Line, or used to identify acomment by commands like Kill Comment.

comment-column Editor Variable

Default value: 0
Mode: Lisp

Column to start commentsin. Set by Set Comment Column.

comment-end Editor Variable

Default value: ni |
Mode: Lisp

String that ends comments. The valueni | indicates Newline termination. If the valueisastring, it isinserted to end a
comment by commands like Indent New Comment Line.

4.7 Parentheses

Insert () Editor Command

Arguments. None
Key sequence: None

Inserts a pair of parentheses, positioning the current point after the left parenthesis. A prefix argument p causes the
parentheses to be placed around p following (or preceding) forms.
Insert Parentheses For Selection Editor Command

Arguments: None
Key sequence: Al t +(

Inserts apair of parentheses around the selected text, if any. If there is no selected text and a prefix argument pis
supplied, inserts them around p following (or preceding) forms. Otherwise it inserts them at the current point. The point
isleft on the character after the left parenthesis.

highlight-matching-parens Editor Variable

Default value: t
Mode: Lisp

119

4 Editing Lisp Programs

When the value is true, matching parentheses are displayed in a different font when the cursor is directly to the right of
the corresponding right parenthesis.

Move Over) Editor Command

Arguments: None
Key sequence: Al t +)

Inserts a new line after the next left parenthesis, moving the current point to the new line. Any indentation preceding the
right parenthesis is deleted, and the new line is indented.

Lisp Insert) Editor Command

Arguments. None

Key sequence:)
Mode: Lisp

Inserts aright parenthesis and highlights the matching left parenthesis, thereby allowing the user to examine the extent of
the parentheses.

Lisp Insert) Indenting Top Level Editor Command

Arguments: None
Key sequence: None

Thecommand Li sp I nsert) Indenting Top Level isthesameasLisp Insert), but if it looks like the insertion
closes atop level form (when the left parenthesisis at the beginning of aline) then it aso indents the form.

Note: Thiscommand isintended as alternative binding to) in Lisp mode for users that like this behavior.

Find Unbalanced Parentheses Editor Command

Arguments. None
Key sequence: None

Moves the point to the end of the last properly matched form, thereby allowing you to easily identify any parenthesesin
your code which are unbalanced.

Fi nd M smat ch isasynonym for Fi nd Unbal anced Par ent heses.

4.8 Documentation

Apropos Editor Command

Arguments: string
Key sequence: Ctrl +H Astring

Displays a Symbol Browser tool which lists symbols with symbol names matching string. The symbol name at the
current point is offered as a default value for string.

By default string is matched against symbol names as aregular expression. A prefix argument causes a plain substring
match to be used instead.

See 28.7 Regular expression syntax in the LispWorks® User Guide and Reference Manual for a description of regular
expression matching. Seethe LispWorks IDE User Guide for a description of the Symbol Browser tool.

120

4 Editing Lisp Programs

Describe Symbol Editor Command

Arguments: symbol
Key sequence: None

Displays adescription (that is, value, property list, package, and so on) of symbol in a Help window. The symbol under
the current point is offered as a default value for string. A prefix argument automatically causes this default value to be
used.

Function Documentation Editor Command

Arguments: None
Key sequence: Ctrl +Shi ft+D

edi tor: function-docunent ati on- command p

Prompts for a symbol, which defaults to the symbol at the current point, and displays the HTML documentation for that
symbol if itisfound in the HTML manuals index pages.

On GTK+ and X11/Moatif, the prefix argument controls whether a new browser window is created. If the option Reuse
existing browser window is selected in the browser preferences, then the prefix argument causes the command to create
anew browser window. If Reuse existing browser window is deselected, then the prefix argument causes the command
to reuse an existing browser window.

Show Documentation Editor Command

Arguments: name
Key sequence: Al t +Ctr | +Shi ft +A

Displays a Help window containing any documentation for the Lisp symbol name that is present in the Lisp image. This
includes function lambda lists, and documentation strings accessible with cl : docunent at i on, if any such
documentation exists.

Show Documentation For Dspec Editor Command

Arguments: dspec
Key sequence: None

Displays any documentation in the Lisp image for the dspec dspec, as described for Show Documentation.

dspec isasymbol or list naming a definition, as described in 7 Dspecs: Tools for Handling Definitionsin the
LispWorks® User Guide and Reference Manual.

4.9 Evaluation and compilation

The commands described below allow the user to evaluate (interpret) or compile Lisp code that exists as text in abuffer. In
some cases, the code may be used to modify the performance of the Editor itself.

4.9.1 General Commands

current-package Editor Variable
Default value: ni |

If non-nil, defines the value of the current package.

121

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

4 Editing Lisp Programs

Set Buffer Package Editor Command

Arguments. package
Key sequence: None

Set the package to be used by Lisp evaluation and compilation while in this buffer. Not to be used in the Listener, which
uses the value of * package* instead.

Set Buffer Output Editor Command

Arguments: stream
Key sequence: None

Sets the output stream that evaluation results in the current buffer are sent to.

4.9.2 Evaluation commands

Evaluate Defun Editor Command

Arguments: None
Key sequence: Al t +Ctrl +X

Evaluates the current top-level form. If the current point is between two forms, the previous form is eval uated.

If theformisadef var form, then the command may first make the variable unbound, according to the value of
eval uat e- def var - act i on, and hence assign the new value. Thisis useful becausecl : def var does not reassign the
value of abound variable but when editing a program it is likely that you do want the new value.

evaluate-defvar-action Editor Variable

Default value: : r eeval uat e- and-warn

This affects the behavior of Evaluate Defun and Compile Defun when they are invoked on adef var form. The
allowed values are:

: eval uat e- and-warn Do not make the variable unbound before evaluating the form, and warn that it was not redefined.

:eval uate Do not make the variable unbound before evaluating the form, but do not warn that it was not
redefined.

1 reeval uat e- and-war n

Make the variable unbound before evaluating the form, and warn that it was therefore redefined.

:reeval uate Make the variable unbound before evaluating the form, but do not warn that it was therefore
redefined.

Reevaluate Defvar Editor Command

Arguments: None
Key sequence: None

Evaluates the current top-level formif itisadef var. If the current point is between two forms, the previousformis
evaluated. The form istreated asif the variable is not bound.

Re- eval uat e Defvar isasynonym for Reeval uat e Defvar.

122

http://www.lispworks.com/documentation/HyperSpec/Body/v_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

4 Editing Lisp Programs

Evaluate Expression Editor Command

Arguments. expression
Key sequence: Esc Esc expression
Key sequence: Al t +Esc expression

Evaluates expression. The expression to be evaluated is typed into the Echo Area and the result of the evaluation is
displayed there also.

Evaluate Last Form Editor Command

Arguments: None
Key sequence: Ctrl +X Ctrl +E

Evaluates the Lisp form preceding the current point.

Without a prefix argument, prints the result in the Echo Area. With anon-nil prefix argument, inserts the result into the
current buffer.

Evaluate Next Form Editor Command

Arguments: None
Key sequence: None

Evaluates the Lisp form following the current point.

Without a prefix argument, prints the result in the Echo Area. With anon-nil prefix argument, inserts the result into the
current buffer.

Evaluate Nearest Form Editor Command

Arguments. None
Key sequence: None

Evaluates the Lisp form that is nearest to the current point. Thisform will be asymbol or number if the point iswithin
that symbol or number, or will be the Lisp form that precedes or follows the point, whichever is nearest.

Without a prefix argument, prints the result in the Echo Area. With anon-nil prefix argument, inserts the result into the
current buffer.

This command contrasts with Evaluate L ast Form which aways evaluate a form that precedes the point.

Evaluate Region Editor Command

Arguments: None
Key sequence: Ctrl +Shi ft +E

Evaluates the Lisp formsin the region between the current point and the mark.

Evaluate Buffer Editor Command

Arguments. None
Key sequence: None

Evaluates the Lisp formsin the current buffer.

Load File Editor Command

Arguments: file
Key sequence: None

123

4 Editing Lisp Programs

Loadsfile into the current eval server, so that al Lisp formsin thefile are evaluated.

See dlso thefunction edi t or : set - pat hname- | oad- f uncti on.

Load File In Listener Editor Command

Arguments: file
Key sequence: None

Loadsfilein aListener window, so that all Lisp formsin the file are evaluated within the Listener's its context.

Toggle Error Catch Editor Command

Arguments: None
Key sequence: None

Toggles error catching for expressions evaluated in the editor. By default, if thereis an error in an expression evaluated
in the editor, a Notifier window is opened which provides the user with anumber of options, including debug, re-
evaluation and aborting of the editor command. However, this behavior can be changed by using

Toggl e Error Catch, sothat inthe event of an error, the error message is printed in the Echo Area, and the user is
given no restart or debug options.

Evaluate Buffer Changed Definitions Editor Command

Arguments. None
Key sequence: None

Evaluates definitions that have been changed in the current buffer during the current LispWorks session (use Buffer
Changed Definitionsto see which definitions have changed). A prefix argument equal to the value of
prefi x-ar gunent - def aul t causes evaluation of definitions changed since last evaluated. A prefix argument of 1
causes evaluation of definitions changed since last saved.

Evaluate Changed Definitions Editor Command

Arguments. None
Key sequence: None

Evaluates definitionsin all Lisp buffers that have been changed during the current LispWorks session. The effect of
prefixes isthe same as for Evaluate Buffer Changed Definitions.

Evaluate System Changed Definitions Editor Command

Arguments: system
Key sequence: None

Evaluates definitions that have been changed in system during the current LispWorks session.

4.9.3 Evaluation in Listener commands

Evaluate Defun In Listener Editor Command

Arguments: editp
Key sequence: None

This command works rather like Evaluate Defun in that it evaluates the current top-level form and handles def var
forms usefully. However, instead of doing the evaluation in the Editor window, the form is evaluated in a Listener
window as if you had entered it there.

If no prefix argument is given (the default), then the evaluation is done immediately asif the form was read from the

124

http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm

4 Editing Lisp Programs

buffer.

If aprefix argument is given, then the text of the form isinserted into the Listener for you to edit before pressing Ret ur n

to evaluateit. A i n- package form isalso inserted before the form when necessary, so thiswill change the current
package in the Listener.

Evaluate Last Form In Listener Editor Command
Arguments: editp
Key sequence: None

This command works rather like Evaluate Last Form in that it evaluates the Lisp form preceding the current point.

However, instead of doing the evaluation in the Editor window, the form is evaluated in a Listener window asif you had
entered it there.

If no prefix argument is given (the default), then the evaluation is done immediately as if the form was read from the
buffer.

If aprefix argument is given, then the text of the form isinserted into the Listener for you to edit before pressing Ret ur n

to evaluateit. A i n- package formisalso inserted before the form when necessary, so thiswill change the current
package in the Listener.

Evaluate Next Form In Listener Editor Command
Arguments: editp
Key sequence: None

This command works rather like Evaluate Next Form in that it evaluates the Lisp form preceding the current point.

However, instead of doing the evaluation in the Editor window, the form is evaluated in a Listener window asif you had
entered it there.

If no prefix argument is given (the default), then the evaluation is done immediately asif the form was read from the
buffer.

If aprefix argument is given, then the text of the form isinserted into the Listener for you to edit before pressing Ret ur n

to evaluateit. A i n- package form isalso inserted before the form when necessary, so thiswill change the current
package in the Listener.

Evaluate Nearest Form In Listener Editor Command

Arguments. None
Key sequence: None

This command works rather like Evaluate Nearest Form in that it evaluates the Lisp form nearest the current point.
However, instead of doing the evaluation in the Editor window, the form is evaluated in a Listener window asif you had
entered it there.

If no prefix argument is given (the default), then the evaluation is done immediately asif the form was read from the
buffer.

If aprefix argument is given, then the text of the form isinserted into the Listener for you to edit before pressing Ret ur n

to evaluateit. A i n- package form isalso inserted before the form when necessary, so this will change the current
package in the Listener.

Evaluate Region In Listener Editor Command

Arguments: editp
Key sequence: None

125

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm

4 Editing Lisp Programs

This command works rather like Evaluate Region in that it evaluates the Lisp forms in the current region. However,
instead of doing the evaluation in the Editor window, the forms are evaluated in a Listener window asif you had entered
it there.

If no prefix argument is given (the default), then the evaluation is done immediately asif the forms were read from the
buffer.

If aprefix argument is given, then the text of the formsisinserted into the Listener for you to edit before pressing
Ret ur n to evaluate it. A i n- package formis also inserted before the forms when necessary, so this will change the
current package in the Listener.

4.9.4 Compilation commands

Compile Defun Editor Command
Arguments. None
Key sequence: Ctrl +Shi ft+C
Compiles the current top-level form. If the current point is between two forms, the previous form is evaluated.

If theformisadef var form, then the command may first make the variable unbound, according to the value of
eval uat e- def var - act i on, and hence assign the new value.Thisis useful becausecl : def var does not reassign the
value of abound variable but when editing a program it is likely that you do want the new value.

Compile Region Editor Command

Arguments. None
Key sequence: Ctrl +Shi ft +R

Compilesthe Lisp formsin the region between the current point and the mark.

Compile File Editor Command

Arguments: file
Key sequence: None

Compilesfile unconditionally, withcl : conpil e-fil e.

No checking is done on write dates for the source and binary files, to see if the file needs to be compiled. Also, no
checking is done to seeif there is a buffer for the file that should first be saved.

Compile Buffer Editor Command

Arguments:. None
Key sequence: Ctrl +Shi ft +B

Reads, compiles and then executes in turn each of the Lisp forms in the current buffer.

Compile Buffer File Editor Command

Arguments: None
Key sequence: None

Compiles the source file in the current buffer as if by Compile File, but checks the buffer and file first.

If the buffer is modified it is saved (updating the source file) before compilation, athough if
conpi | e-buf fer-file-confirmistruethecommand prompts for confirmation before saving and compiling.

If its associated binary (fadl) file is older than the source file or does not exist or the prefix argument is supplied then the

126

http://www.lispworks.com/documentation/HyperSpec/Body/m_in_pkg.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defpar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_cmp_fi.htm

4 Editing Lisp Programs

fileis compiled, although if conpi | e- buffer-fil e-confirmist thecommand prompts for confirmation before
compiling.

If the binary fileis up to date, command prompts for confirmation before compiling, although this prompt can be
avoided by supplying the prefix argument.
Compile and Load Buffer File Editor Command

Arguments:. None
Key sequence: None

The command Conpi | e and Load Buffer Fil e compilesthe sourcefilein the current buffer just like Compile
Buffer File, with the same checks.

It then loads the compiled file. In the case that the binary file is up to date and the user declines to compile, the command
first prompts for confirmation before loading the existing binary file.

Compile and Load File Editor Command

Arguments: filename
Key sequence: None

The command Conpi | e and Load Fi | e promptsfor afilename, and then compiles and loads that file.

compile-buffer-file-confirm Editor Variable
Default value: t

Determines whether Compile Buffer File should prompt for a compilation to proceed. If the value istrue, the user is
always prompted for confirmation.

Compile Buffer Changed Definitions Editor Command

Arguments: None
Key sequence: None

Compiles definitions that have been changed in the current buffer during the current LispWorks session (use Buffer
Changed Definitions to see which definitions have changed). A prefix argument equal to the value of
pr ef i x- ar gunment - def aul t causes compilation of definitions changed since last compiled. A prefix argument of 1
causes compilation of definitions changed since last saved.

Compile Changed Definitions Editor Command

Arguments. None
Key sequence: None

Compiles definitionsin all Lisp buffers that have been changed during the current LispWorks session. The effect of
prefixesis the same as for Compile Buffer Changed Definitions.

Compile System Editor Command

Arguments: system
Key sequence: None

Compilesall filesin the system system.

If ASDF isloaded and the LispWorks tools are configured to use it, then this command works with ASDF systems as
well asthose defined by | i spwor ks: def syst em

127

4 Editing Lisp Programs

Compile System Changed Definitions Editor Command

Arguments. system
Key sequence: None

Compiles definitions that have been changed in system during the current LispWorks session.

Disassemble Definition Editor Command

Arguments: definition
Key sequence: None

Outputs assembly code for definition to the Output window, compiling it first if necessary. The name of the current top-
level definition is offered as a default value for definition.

Edit Recognized Source Editor Command

Arguments. None
Key sequence: Ctrl +X ,

Edit the source of the next compiler message, warning or error. It should be used while viewing the Output window.
Without a prefix argument, it searches forwards in the Output window until it finds text which it recognizes as a compiler
message, warning or error, and then shows the source code associated with that message. With a prefix argument, it
searches backwards.

4.10 Code Coverage

These commands allow you to visualize code coverage data by coloring the source code in a LispWorks editor.

4.10.1 Coloring code coverage

By default, these commands call hcl : edi t or - col or - code- cover age with for-editing t . This means that they find the
existing buffer for thefile if there is one (aways true for Code Cover age Current Buffer), and do not modify the text at all.
When used with a prefix argument, these commands pass for-editing ni | , which causes creation of a special buffer without a
pathname and different name, and then coloring contains counters.

Code Coverage Current Buffer Editor Command

Arguments. None
Key sequence: None

Colorsthe codein the current buffer with code coverage data.

The file named by the buffer pathname of the current buffer needs to have code coverage data in the default code
coverage data. Thismay be set by hcl : code- cover age- set - edi t or - def aul t - dat a or the commands Code
Coverage Set Default Data and Code Cover age L oad Default Data.

If aprefix argument is supplied, then a buffer without a pathname is created with a different name from the sourcefile,
which prevents accidental overwriting of the sourcefile.

The actual coloring isdone by calling hcl : edi t or - col or - code- cover age, see the LispWorks® User Guide and
Reference Manual for details.

See also: Code Coverage File.

128

4 Editing Lisp Programs

Code Coverage File Editor Command

Arguments. None
Key sequence: None

Prompts for afile, opens and colorsit with code coverage data in the same way as Code Cover age Current Buffer.

See also: Code Coverage Current Buffer.

4.10.2 Setting the default code coverage data

Code Coverage Load Default Data Editor Command

Arguments: None
Key sequence: None

Sets the default code coverage data that the editor uses to color.
The command prompts for afilename, and passes the result to hcl : code- cover age- set - edi t or - def aul t - dat a.

See also: Code Coverage Current Buffer.

Code Coverage Set Default Data Editor Command

Arguments. None
Key sequence: None

Sets the default code coverage data that the editor uses to color.

The command prompts for astring, reads and evaluates it, and then passes the result to
hcl : code- cover age- set - edi t or - def aul t - dat a.

See also: Code Coverage Current Buffer.

4.11 Breakpoints

These commands operate on breakpoints, which are pointsin code where execution stops and the LispWorks IDE invokes the
Stepper tool.

See "Breakpoints' in the LispWorks IDE User Guide for more information about breakpoints and the Stepper tool.

4.11.1 Setting and removing breakpoints

Toggle Breakpoint Editor Command

Arguments. None
Key sequence: None

If there is no breakpoint at the current point, sets a breakpoint there if possible. If there isabreakpoint at the current
point, removesit.

4.11.2 Moving between breakpoints

129

4 Editing Lisp Programs

Next Breakpoint Editor Command

Arguments. None
Key sequence: None

Moves the point to the next breakpoint in the current buffer. If given anumeric prefix argument p, it skips p-1
breakpoints.

Previous Breakpoint Editor Command

Arguments: None
Key sequence: None

Moves the point to the previous breakpoint in the current buffer. If given a numeric prefix argument p, it skips p-1
breakpoints.

4.12 Stepper commands

Stepper Breakpoint
Stepper Continue

Stepper Macroexpand
Stepper Next

Stepper Restart

Stepper Show Current Source
Stepper Step

Stepper Step Through Call
Stepper Step to Call
Stepper Step to Cursor
Stepper Step to End
Stepper Step to Value

Stepper Undo Macroexpand Editor Commands

Arguments: None
Key sequence: None

These commands run the corresponding Stepper command in the current Stepper toal.

See " Stepper controls' in the LispWorks IDE User Guide for more information about these commands and the Stepper
tool.
4.13 Removing definitions

These commands allow the user to remove definitions from the running Lisp image. 1t uses Common Lisp functionality such
asf makunbound, makunbound and r enove- net hod to undefine Lisp functions, variables, methods and so on.

Note: This does not mean deleting the source code.

130

http://www.lispworks.com/documentation/HyperSpec/Body/f_fmakun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_makunb.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_rm_met.htm

4 Editing Lisp Programs

4.13.1 Undefining one definition

Undefine Editor Command

Arguments: None
Key sequence: None

Without a prefix argument, this undefines the current top level definition. That is, the defining form around or preceding
the current point.

With anon-nil prefix argument, this does not undefine the definition but instead inserts into the buffer a Lisp form which,
if evaluated, would undefine the definition.
Undefine Command Editor Command

Arguments: None
Key sequence: None

Prompts for the name of an Editor command, and undefines that command.

4.13.2 Removing multiple definitions

Undefine Buffer Editor Command

Arguments: None
Key sequence: None

Undefines all the definitions in the current buffer.

Undefine Region Editor Command

Arguments: None
Key sequence: None

Undefines the definitions in the current region.

4.14 Definition folding

Definition folding means making the body of the definition invisible, as well as the preceding lines up to the previous
definition. Currently the implementation applies only to Lisp definitions. A line starting with an left parenthesisis regarded
as the begining of a Lisp definition, and the matching right parenthesisisits end.

Definition folding is done by folds. Each fold hides the body of a definition and the preceding lines, which are referred to as
the comment for this definition. Thefirst line of the definition remains visible, and also the right parenthesis. The body is
invisible, and instead three dots (. . .) are displayed. The comment isaso made invisible. By default, nothing is displayed
for the comment, but that can be configured by Preferences... > Editor > Editor Options > Hidden Comment String (seein
12.7.3 Other Editor options in the LispWorks IDE User Guide).

There are three commands to manipulate definition folding:

* Fold Buffer Definitionsfolds all the definitions in the current buffer.

« Unfold Buffer Definitions unfolds all the definition in the current buffer.

» Toggle Current Definition Folding toggles the folding of the current definition.

When an incremental search matchesinside afolded definition, the definition is unfolded temporarily. Unless the incremental
search is ended by the abort gesture (Ct r | +G, or Esc in Microsoft Windows editor emulation), the definition in which the

131

4 Editing Lisp Programs

last match occurred isleft unfolded, while al the other definitions that were temporarily unfolded are refolded. If the search
is ended by the abort gesture, all temporarily unfolded defintions are refol ded.

Folding hides most of the newlines in the buffer and displays the first line of the definition and its right parenthesis on the
same display line on the screen. Thus each display line on the screen contains text from two different linesin the full text of
the buffer. That causes line-based editor commands such as Next Line and Previous Line to behave in a somewhat non-
intuitive way. However, they still do the right thing, which is moving between those lines in the full text that are visible on
the screen (which may be in the same display line).

The folds affect only the way the text in the buffer is displayed on the screen, and have no effect on the buffer's contents. If
you re-read the buffer from itsfile, for example by reverting using either Revert Buffer or from the menu, then the folds are
eliminated.

Fold Buffer Definitions Editor Command

Arguments: None
Key sequence: None

Folds the definitions in the current buffer. See 4.14 Definition folding above for the description of definition folding.

Fol d Buffer Definitions goesthrough the whole buffer from the beginning, and adds afold for each definition.

If an unclosed definition is found (that is aline starting with an | eft parenthesis which does not have a matching right
parenthesis) then Fol d Buf f er Defi niti ons assumesthat al following lines starting with a space or tab are part of
the unclosed defintion. It then skips the unclosed definition without trying to fold it.

Unfold Buffer Definitions Editor Command

Arguments. None
Key sequence: None

Unfolds al the definitions in the current buffer. See 4.14 Definition folding above for the description of definition
folding.

Toggle Current Definition Folding Editor Command

Arguments: None
Key sequence: None

Changes the folding state of the current definition (the definition where the cursor is).

Without a prefix argument, Toggl e Current Definition Fol di ng unfoldsthe current definition if it isfolded,
otherwise the command folds the current definition. Thisis the default behavior.

With any prefix argument except 0, Toggl e Current Definition Fol di ng ensuresthat the current definition is
folded.

With prefix 0, Toggl e Current Definition Fol di ng ensuresthat the current definition is unfolded.

4.15 Remote debugging

Connect Remote Debugging Editor Command

Arguments: host port
Key sequence: None

Connectsto aremote client for remote debugging. Without a prefix argument, also immediately open a Listener.

132

4 Editing Lisp Programs

Reconnect Remote Listener

Arguments. None
Key sequence: None

Editor Command

Reconnects a Remote Listener to aremote client. It can be used only in a Remote Listener after the client side has
disconnected, which may be either because the read-eval-print loop on the client side exited, or the connection was
closed (which may also be because the client crashed). The command tries to reconnect the Listener to the same client,
which can work if the connection is still open, if there is another connection to the same client, or if the client islistening

for connections.

Remote Evaluate Buffer

Arguments: None
Key sequence: None

Evaluates, in the remote client, the Lisp formsin the current buffer.

Remote Evaluate Region

Arguments. None
Key sequence: None

Evaluates, in the remote client, the Lisp formsin the current region.

Remote Evaluate Defun

Arguments. None
Key sequence: None

Evaluates, in the remote client, the current top level form.

Remote Evaluate Last Form

Arguments: None
Key sequence: None

Evaluates, in the remote client, the Lisp form preceding the current point.

Remote Evaluate Region In Listener

Arguments. None
Key sequence: None

Evaluates, in a Remote Listener, the Lisp formsin the current region.

Remote Evaluate Defun In Listener

Arguments. None
Key sequence: None

Evaluates, in a Remote Listener, the current top level form.

Remote Evaluate Last Form In Listener

Arguments: None
Key sequence: None

Evaluates, in a Remote Listener, the Lisp form preceding the current point.

133

Editor Command

Editor Command

Editor Command

Editor Command

Editor Command

Editor Command

Editor Command

4 Editing Lisp Programs

Set Default Remote Debugging Connection Editor Command

Arguments. None
Key sequence: None

Sets the default remote debugging connection.

134

5 Emulation

By default the LispWorks Editor emulates GNU Emacs. Thisis often unusable for programmers familiar only with Microsoft
Windows keys and behavior: for instance, a selection is not deleted on input, and most of the commonly used keys differ.

The LispWorks editor can be switched to emulate the Microsoft Windows model instead of Emacs.
When using Microsoft Windows editor emulation the main differences are:
» An alternate set of key bindings for the commonly-used commands.
» The Al t key activates the menu bar, and does not act as Met a when used as the only modifier key.
» The abort gesture for the current editor command iSEsc, not Ct r | +G,
* |nserted text replaces any currently selected text.

» Thecursor isavertical bar rather than a block.

5.1 Using platform-specific editor emulation

The editor supports platform-specific emulation. To switch Microsoft Windows editor emulation on, use Preferences... >
Environment > Emulation. See the section "Configuring the editor emulation™ in the LispWorks IDE User Guide for details.

5.2 Key bindings

The key bindings for Microsoft Windows editor emulation are supplied in the LispWorks library file
confi g\ mew key- bi nds. | i sp. Thisfileisloaded the first time that you use Microsoft Windows editor emulation, or on
startup if your preferenceis stored.

5.2.1 Finding the keys
There are several waysto find the key for a given command, and the command on a given key:

» Thefilesnmsw key- bi nds. | i sp andsel ecti on-key-bi nds. | i sp show the default state, just like
key- bi nds. | i sp showsthe Emacs bindings.

» The Editor command Describe Bindings shows all the current key bindings, including those specific to the buffer, the
major mode and any minor modes that are in effect.

» The Editor command Describe K ey reports the command on a given key.
» The Editor command Wher e | s reports the key for a given command.

e UsetheHel p > Editing menu.

5.2.2 Modifying the Key Bindings

Asin Emacs emulation, the key sequencesto which individual commands are bound can be changed, and key bindings can
be set up for commands which are not, by default, bound to any key sequences.

135

5 Emulation

Interactive means of modifying key bindings are described in 3.32 Key bindings. Key bindings can also be defined
programmatically viaedi t or : bi nd- key forms similar to those in nsw key- bi nds. | i sp.

However, note that you must use edi t or : set -i nt er r upt - keys if you wish to alter the abort gesture.

5.2.3 Accessing Emacs keys

When Microsoft Windows emulation is on, Emacs keys are till available viathe prefix Ct r | +E. For example, to invoke the
command WFind File, enter:

CGrl+E Crl+X Crl +F

Note that you will not have Al t behaving asthe Met a key. However you can use Ct r | +Minstead. For example, to run the
command Skip Whitespace, enter:

Ctrl+M X Skip Wi tespace

Emacs Command Editor Command

Arguments: key
Key sequence: Ctrl+E key in Microsoft Windows emulation

This command is only available when using Microsoft Windows editor emulation. It prompts for a keystroke key and
invokes the editor command that would be bound to key if you were using Emacs emulation.

Emacs Command isnewly documented in LispWorks 8.1 but is also available in older versions.

5.2.4 The Alt modifier and editor bindings

In Microsoft Windows emulation on Microsoft Windows, keystrokes with the Al t modifier key are used by the system to
activate the menu bar. Therefore these keystrokes, for example Al t +Aand Al t +Ct r | +A are not available to the editor.

Windows accel erators always take precedence over editor key bindings, so in Emacs emulation the Al t modifier key only
acts as Meta though keystrokes with Al t if there is no accelerator which matches.

On Cocoa, the preference for the Meta key affects the operation of menu accel erators (shortcuts). If Conmand is used as
Meta, then it will not be available for use as an accelerator.

5.3 Replacing the current selection

When using Microsoft Windows editor emulation, Delete Selection Mode is active so that selected text is deleted when you
type or paste text. Also, Del et e deletesthe current selection.

Note: Delete Selection Maode can aso be used independently of Microsoft Windows editor emulation. See 3.13 Delete
Selection for details.

5.4 Emulation in Applications

If you include the LispWorks editor (viacapi : edi t or - pane or its subclasses) in an application, then by default your
interfaces will use Microsoft Windows emulation on Windows, macOS editor emulation on Cocoa, and Emacs emulation on
Linux and other Unix-like systems.

To override this behavior in your interface classes, define amethod on capi : i nt er f ace- keys- st yl e. Seethe CAPI User
Guide and Reference Manual for details.

136

5 Emulation

To override this behavior in your delivered application, use the delivery keyword : edi t or - st yl e. Seethe Delivery User
Guide for details.

137

6 Advanced Features

The editor can be customized, both interactively and programmatically, to suit the users requirements.

The chapter 3 Command Reference provides details of commands used to customize the editor for the duration of an editing
session (see 3.28 Keyboard macros, 3.32 Key bindings, 3.30 Editor variables). This chapter contains information on
customizing the editor on a permanent basis.

There are anumber of ways in which the editor may be customized:

» The key sequencesto which individual commands are bound can be changed, and key bindings can be set up for
commands which are not, by default, bound to any key sequences—see 6.1 Customizing default key bindings.

» Theindentation used for Lisp forms can be modified to suit the preferences of the user—see 6.2 Customizing Lisp
indentation.

» Additional editor commands can be created by combining existing commands and providing specified arguments for
them—see 6.3 Programming the editor.

Note that the default configuration files mentioned in this chapter were used when LispWorks was released. They are not read
in when the system is run, so any modification to them will have no effect. If the user wishes to modify the behavior of
LispWorksin any of these areas, the modifying code should beincluded inthe. I i spwor ks file, or an image containing the
modifications should be saved.

6.1 Customizing default key bindings

The key sequences to which individual commands are bound can be changed, and key bindings can be set up for commands
which are not, by default, bound to any key sequences. Interactive means of modifying key bindings are described in 3.32
Key bindings.

This section describes the editor function bi nd- key, which is used to establish bindings programmatically. If you want to
ater your personal key bindings, put the modifying codeinyour . | i spwor ks file.

The default Emacs key bindings can be found in thefileconf i g/ key- bi nds. | i sp inthe LispWorks library directory. See
5.2 Key bindings for details of the key binds files used in other editor emulations.

editor:bind-key Function

edi t or: bi nd- key name key &optional kind where
Binds the command name to the key sequence or combination key.
kind can takethevalue: gl obal , : node, or : buf fer.

The default for kind is: gl obal . which makes the binding apply in all buffers and al modes, unless overridden by a
mode-specific or buffer-specific binding.

If where is not supplied, the binding is for the current emulation. Otherwise where should be either : emacs or : pc,
meaning that the binding is for Emacs emulation or Microsoft Windows editor emulation respectively.

Note: before the editor starts, the current emulation is: emacs. Therefore bi nd- key forms which do not specify where
and which are evaluated before the editor starts (for example, in your initialization file) will apply to Emacs emulation
only. Thusfor example:

138

6 Advanced Features

(bi nd-key "Command" "Control -Ri ght")

when evaluated in your initialization file will establish an Emacs emulation binding. The same form when evaluated after
editor startup will establish a binding in the current emulation: Emacs or Microsoft Windows emulation.

Itis best to specify the intended emulation:

(editor:bind-key "Conmmand" "Control -Ri ght" :global :pc)
(editor:bind-key "Comuand" "Control -Right" :global :nac)

If kindis: buf f er the binding applies only to a buffer which should be specified by the value of where.
If kindis: node the binding applies only to a mode which should be specified by where.

If this function is called interactively viathe command Bind Key, you will be prompted as necessary for the kind of
binding, the buffer or the mode. The binding isfor the current emulation. Tab completion may be used at any stage.

The following examples, which are used to implement some existing key bindings, illustrate how key sequences can be
specified using bi nd- key.

(editor:bind-key "Forward Character"” "Control -f")
(editor:bind-key "Forward Word" "Meta-f")

(editor:bind-key "Save File" #("Control-x" "Control-s"))
(editor:bind-key "ISearch Forward Regexp" "Meta-Control-s")
(editor:bind-key "Conplete Field" #\ space :nbde "Echo Area")
(editor:bind-key "Backward Character" "left")
(editor:bind-key "Forward Word" #("control-right"))

editor:bind-string-to-key Function

edi tor: bind-string-to-key string key &pti onal kind where

Binds the text string string to the keyboard shortcut key without the need to create a command explicitly. Using key
inserts string in the current buffer. The kind and where arguments are asfor edi t or : bi nd- key.

editor:set-interrupt-keys Function
editor:set-interrupt-keys keys &pti onal input-style

The key that aborts the current editor command is handled specially by the editor. If you wish to change the default
(from Ct r I +Gfor Emacs) then you must use this function rather than edi t or : bi nd- key. Seethefile
confi g\ mew key- bi nds. | i sp for an example.

6.2 Customizing Lisp indentation

The indentation used for Lisp forms can be modified to suit the preferences of the user.

The default indentations can be found in thefileconfi g/ i ndent s. | i sp inthe LispWorks library directory. If you want to
alter your personal Lisp indentation, put the modifying codeinyour . | i spwor ks file.

editor:setup-indent Function

edi t or: setup-i ndent formname no-of-args &opti onal standard special

Modifies the indentation, in Lisp Mode, for the text following an instance of form-name. The arguments no-of-args,
standard and special should all be integers. The first no-of-args forms following the form-name become indented special
spacesif they are on anew line. All remaining forms within the scope of the form-name become indented standard

139

6 Advanced Features

spaces.

For example, the default indentation for i f in Lisp codeis established by:
(editor:setup-indent "if" 2 2 4)

This determines that the first 2 forms after thei f (that is, thet est and thet hen clauses) get indented 4 spaces relative
tothei f, and any further forms (here, just an el se clause) are indented by 2 spaces.

6.3 Programming the editor

The editor functions described in this section can be combined and provided with arguments to create new commands.

Existing editor commands can also be used in the creation of new commands. Every editor command documented in this
manual is named by a string command which can be used to invoke the command interactively, but there is also associated
with this a standard Lisp function (the "command function") named by a symbol exported from the EDI TOR package. You
can use this symbol to call the command programmatically. For example, the editor command Forward Char acter is
referred to by edi t or : f or war d- char act er - conmand.

The first argument of any command function is the prefix argument p, and this must therefore be included in any
programmatic call, even if the prefix argument isignored. Some commands have additional optional arguments. For example
toinsert 42 A\l characters, you would call:

(editor:self-insert-conmand 42 #\!)

Details of these optional arguments are provided in the command descriptions throughout this manual.

Seeedi t or : def conmand for the details of how to create new commands.

Note: code which modifies the contents of acapi : edi t or - pane (for example adisplayed editor buffer) must be run only in
the interface process of that pane.

The following sections describe editor functions that are not interactive editor commands.

6.3.1 Calling editor functions

All editor commands and some other editor functions expect to be called within a dynamic context that includes settings for
the current buffer and current window. This happens automatically when using the editor interactively.

You can set up the context in a CAPI application by using the function capi : cal | - edi t or (seethe CAPI User Guide and
Reference Manual).

You can also use the following function to call editor commands and functions.

editor:process-character Function

edi tor: process-character char window

Processes char in a dynamic context where the current window is window and the current buffer is the buffer currently
displayed in window.

The char can be one of the following:
* A string, naming an editor command to invoke.

e Alist of theform (function . args), which causes function to be called with args. Theitemsin args are not
evaluated.

140

http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_if.htm

6 Advanced Features

« A function or symbol, which is called with ni | asits argument (like acommand function would be if thereisno
prefix argument).

« A character or syst em gest ur e- spec object, which istreated asif it has been typed on the keyboard.

Thereis no return value. The processing may happen in another thread, so may not have competed before this function
returns.
editor:with-running-operation Function
edi tor:w th-runni ng-operation &ody body => result-of-body

Themacro edi t or : wi t h-r unni ng- oper at i on evaluates the formsin body in a"running operation”, which means
avoidng interaction with the user. Various interactions that would normally occur when opening afilein the editor are
blocked. For example, it does not ask about auto-save (it just always uses thefile) and it does not ask whether to create a
new package (it just does not create one).

edi tor:with-runni ng-operati on isuseful when you want to treat the files as "text", most typical doing searches.
The Search Files' tool of the the LispWorks IDE, for example, relieson it.

6.3.2 Defining commands

editor:defcommand Macro

edi t or: def conmand name lambda-list command-doc function-doc &ody forms => command-function

Defines anew editor command. nameis a usualy string naming the new editor command which can invoked in the
editor via Extended Command, and command-function is a symbol naming the new command function which can be
called programmatically. The command-function symbol isinterned in the current package.

lambda-list is the lambdallist of the new command, which must have at least one argument which is usually denoted p,
the prefix argument.

command-doc and function-doc should be strings giving detailed and brief descriptions of the new command
respectively.

formsisthe Lisp code for the command.

The name of the command must be a string, while the name of the associated command function must be a symbol.
There are two ways in which hame can be supplied. Most simply, name is given as a string, and the string is taken to be
the name of the editor command. The symbol naming the command function is computed from that string: spaces are
replaced with hyphens and alphabetic characters are uppercased, but otherwise the symbol name contains the same
characters as the string with - COMVAND appended.

If a specific function name, different to the one def conmand derivesitself, isrequired, then this can be supplied
explicitly. To do this, name should be alist: itsfirst element isthe string used as the name of the command, while its
second and last element is the symbol used to name the Lisp command function.

For example the following code defines an editor command, Move Fi ve, which moves the cursor forward in an editor
buffer by five characters.

(editor:defconmmand "Mve Five" (p)
"Moves the current point forward five characters.
Any prefix argunent is ignored."
"Moves five characters forward."
(editor:forward-character-comrand 5))

=>

MOVE- FI VE- COMWAND

141

6 Advanced Features

The prefix argument p is not used, and is there simply because the lambda-list must have at least one element.
Use Al t +X Move Fi ve toinvoke the command.

As another exampl e this command changes all the text in awritable buffer to be uppercase:

(editor:defconmmand "Uppercase Buffer” (p)
"Uppercase the buffer contents” ""
(declare (ignore p))
(let* ((buffer (editor:current-buffer))
(point (editor:buffer-point buffer))
(start (editor:buffers-start buffer))
(end (editor:buffers-end buffer)))
(editor:set-current-mark start)
(editor:nove-point point end)
(editor: uppercase-region-comand nil)))

Having defined your new command, you can invoke it immediately by Al t +X Upper case Buffer.

You could also call it programmatically:

(upper case-buf fer-comand nil)

If you anticipate frequent interactive use of Upper case Buf f er you will want to bind it to akey. You can do this
interactively for the current session using Bind Key. Also you can put something like thisin your initialization file to
establish the key binding for each new session:

(editor:bind-key "Uppercase Buffer" #("Control-x" "Meta-u"))
Then, entering Ct r | +X Al t +U will invoke the command.

Define Command Synonym Editor Command

Arguments: new-name, command-name
Key sequence: None

The command Def i ne Command Synonymprompts for a string and an existing command name, and makes the string
be a synonym for the existing command name.

6.3.3 Buffers

editor:buffer Type

Each buffer that you manipulate interactively using editor commandsis an object of type edi t or : buf f er that can be
used directly when programming the editor. Buffers contain an arbitrary number of edi t or : poi nt objects, which are
used when examining or modifying the text in a buffer (see 6.3.4 Paints).

6.3.3.1 Buffer locking

Each buffer contains alock that is used to prevent more than one thread from maodifying the text, text properties or points
within the buffer simultaneously. All of the exported editor functions (edi t or ;i nsert-string, edi t or: nove- poi nt
etc) claim thislock implicitly and are therefore atomic with respect to other such functions.

In situations where you want to make several changes as one atomic operation, use one of the
macrosedi t or: wi t h-buffer-1 ocked oreditor:wth-point-|ocked tolock the buffer for the duration of the
operation. For example, if you want to delete the next character and replace it by a space:

142

6 Advanced Features

(editor:with-buffer-locked ((editor:current-buffer))
(editor:del ete-next-character-conmand nil)
(editor:insert-character (editor:current-point)

#\ Space))

In addition, you sometimes want to examine the text in a buffer without changing it, but ensure that no other thread can
modify it in the meantime. This can be achieved by locking the buffer using edi t or : wi t h- buf f er -1 ocked or

edi t or: wi t h- poi nt - | ocked and passing the for-modification argument asni | . For example, if you are computing the
beginning and end of some portion of the text in a buffer and then performing some operation on that text, you may want to
lock the buffer to ensure that no other threads can modify the text while your are processing it.

editor:with-buffer-locked Macro

editor:w th-buffer-1ocked (buffer &ey for-modification check-file-modification block-interrupts) &body body =>
values

Evaluates body while holding the lock in buffer. At most one thread can lock a buffer at atime and the macro waits until
it can claim the lock.

If for-modification is non-nil (the default), the contents of buffer can be modified by body. If for-modification isni | , the
contents of buffer cannot be modified until body returns and trying to do so from within body will signal an error. If the
buffer is read-only and for-modification is non-nil, then an edi t or : edi t or - err or issignaled. The status of the lock
can be changed to for-modification (see edi t or : change- buf f er - | ock- f or - nodi fi cat i on). If the buffer isread-
only, anedi tor: edi t or - error occursif for-modification ist .

Themacroedi t or: wi t h- buf f er -1 ocked can be used recursively, but if the outermost use passed ni | as the value of
for-moadification, then inner uses cannot pass non-nil as the value of for-modification, unless
edi tor: change-buffer-| ock-for-nodificationisusedtochangethelock status.

If check-file-modification is non-nil (the default) and the buffer is associated with afile and has not already been
modified, then the modification time of the file is compared to the time that the file was last read. If the file is newer than
the buffer, then the user is asked if they want to re-read the file into the buffer, and if they do then thefileisre-read and
the operations aborts. Otherwise, there is no check for the file being newer than the buffer.

If block-interruptsis non-nil, the body is evaluated with interrupts blocked. Thisis useful if the buffer may be modified
by an interrupt function, or some interrupt function may end up waiting for another thread that may wait for the buffer
lock, which would cause adeadlock. The default is not to block interrupts.

Note that using a non-nil value for block-interruptsis not the same as using thewi t hout - i nt errupt s or
wi t hout - pr eenpt i on macros. It just stops the current thread from calling interrupt functions, so other threads might
run while the body is being evaluated.

The values returned are those of body.

editor:with-point-locked Macro

editor:w th-point-1ocked (point &ey for-modification check-file-modification block-interrupts errorp) &body body
=> values

Evaluates body while holding the lock in the buffer that is associated with point. In addition, the macro checks that point
isvalid and this check is atomic with respect to calls to the function edi t or : del et e- poi nt . The values of for-
modification, check-file-modification and block-interrupts have the same meanings as for

editor:wth-buffer-I ocked.

The value of errorp determines the behavior when point is not valid. If errorp is non-nil, an error is signaled, otherwise
ni | isreturned without evaluating body. The point may be invalid because it does not reference any buffer (that is, it has
been deleted), or because its buffer was changed by another thread while the current thread was attempting to lock the
buffer.

143

6 Advanced Features

The values returned are those of body, or ni | when errorpisni | and point isnot valid.

editor:change-buffer-lock-for-modification Function

edi tor: change- buffer-1ock-for-nodification buffer &ey check-fileemodification force-modification => result

Changes the status of the lock in the buffer buffer to allow modification of the text. buffer must already be locked for non
-modification by the current thread (that is, it must be dynamically within aedi t or : wi t h- buf f er - 1 ocked or
edi tor: wi t h- poi nt - | ocked form with for-modification ni |).

buffer An editor buffer.

check-file-modification

A boolean.
force-modification A boolean.
result s buf fer-not-I| ocked, : buf fer-out-of-dateor: buffer-not-witable.

If check-file-modification is non-nil, the same test as described for edi t or : wi t h- buf f er - | ocked is performed, and if
the file has been modified then : buf f er - out - of - dat e is returned without changing anything (it does not prompt the
user to re-read the file).

The default value of check-file-modificationist .

force-modification controls what happensif the buffer is read-only. If force-modification isni | , the function returns
:buf fer-not-witabl e and does nothing. If it isnon-nil, the status is changed. The buffer remains read-only.

resultisni | if the status of the locking was changed to for-modification, or if the status of the buffer lock was aready
for-modification. Otherwise, result is a keyword indicating why the status could not be changed. When result is non-nil,
the status of the locking remains unchanged.

The returned value can be be one of:

:buffer-not-1ocked Thebufferisnotlocked by the current thread.

buffer-not-witable

The buffer is not writable, and force-modificationisni | .

:buf fer-out-of-date

Thefile that is associated with the buffer was modified after it was read into the editor, the buffer
is not modified, and check-file-modification is non-nil.

6.3.3.2 Buffer operations

editor:*buffer-list* Variable
Contains alist of al the buffersin the editor.

editor:current-buffer Function

edi tor: current-buffer => buffer

Returns the current buffer.

144

6 Advanced Features

editor:buffer-name Function

edi t or: buf f er- nane buffer => name

Returns the name of buffer.

editor:window-buffer Function

edi t or: wi ndow- buf f er window => buffer

Returns the buffer currently associated with window.

editor:buffers-start Function

editor: buffers-start buffer => point

Returns the starting point of buffer.

editor:buffers-end Function

editor: buffers-end buffer => point

Returns the end point of buffer.

editor:buffer-point Function

edi tor: buf fer-poi nt buffer => point

Returns the current point in buffer.

editor:use-buffer Macro

edi tor: use-buffer buffer &ody forms

Makes buffer the current buffer during the evaluation of forms.

editor:buffer-from-name Function

edi tor: buffer-fromnane name => buffer

Returns the buffer called name (which should be a string). If thereis no buffer with that name, ni | isreturned.

editor:make-buffer Function

edi t or: make- buf f er name &ey modes contents temporary base-name name-pattern => buffer
Creates or returns an existing buffer.
name should be astring or ni | .

modes should be alist of strings naming modes. The first mode must be a major mode, and the rest minor modes. The
default value of modes isthe value of def aul t - nodes.

base-name should be astring or ni | . If name and temporary are both ni | then base-name must be a string.
contents should be astring, ni | ort (default valueni |).

temporary is aboolean (default value ni |).

name-pattern should be a string (default value " ~a<~a>").

When name is non-nil, it is the name of the buffer. If there is already a buffer with this name which is not temporary and

145

6 Advanced Features

the temporary argument isni | , make- buf f er returnsthat buffer. Before doing so, it setsits contents to contents unless
contentsist . When contentsisni | , the buffer is made empty.

If nameisni | or temporary isnon-nil or abuffer with the name cannot be found, then anew buffer is made and
returned. The buffer's contentsis set to contentsif contentsis a string, and otherwise the buffer is made empty. The
name of the buffer is set to name if name is non-nil.

If temporary isni | , the buffer is added to the internal tables of the editor. If nameis non-nil, it isused. Otherwise
make- buf f er triesto use base-name. If thereis aready a buffer with this name, it constructs another name by:

(format nil name-pattern base-name n)

with different integers n until it constructs an unused name, which it uses as the buffer's name.

If temporary is non-nil, the buffer is not added to the internal tables. It is aso marked as temporary, which mainly means
that it does not have auto-save and backup files, and avoids calling general hooks when it is modified.

Notes:

Using: tenporary t givesyou abuffer that is'yours, that is the editor does not do anything with it except in response
to explicit calls from your code. Except when actually editing files, thisis the most useful way of using buffersin most
Cases.

capi : edi t or - pane with the: buf f er :tenp initarg uses:

(rmake-buffer ... :tenporary t)

editor:goto-buffer Function

edi t or: got o- buf f er buffer in-same-window

Makes buffer the current buffer. If buffer is currently being shown in awindow then the cursor is moved there. If buffer
is not currently in awindow and in-same-window is non-nil then it is shown in the current window, otherwise anew
window is created for it.

editor:clear-undo Function

edi tor: cl ear-undo buffer

Clears any undo information in the buffer buffer.

6.3.4 Points

editor:point Type

L ocations within a buffer are recorded asedi t or : poi nt objects. Each point remembers a character position within the
buffer and al of the editor functions that manipulate the text of a buffer locate the text using one or more point objects
(sometimes the current point).

A point's kind controls what happens to the point when text in the buffer isinserted or deleted.

: t enpor ar y points are for cases where you need read-only access to the buffer. They are like GNU Emacs "points".
They have alower overhead than the other kinds of point and do not need to be explicitly deleted, but do not usethemin
cases where you make a point, insert or delete text and then use the point again, since they do not move when the text is
changed. Also, do not use them in cases where more than one thread can modify their buffer without locking the buffer
first (see 6.3.3.1 Buffer locking).

:before-insert and: after-insert pointsarefor cases where you need to make apoint, insert or delete text and

146

6 Advanced Features

gtill use the point afterwards. They are like GNU Emacs "markers'. The difference between these two kinds is what
happens when text isinserted. For a point at position n from the start of the buffer, inserting len characters will leave the
point at either position n or n+len according to the following table.

Editor point positions after text insertion

kind Insertat <n Insertat =n Insert at > n
s before-insert n+len n n
cafter-insert n+len n+len n

When text isdeleted, : bef ore-insert and: aft er-i nsert pointsare treated the same: points <= the start of the
deletion remain unchanged, points >= the end of the deletion are moved with the text and points within the del eted
region are automatically deleted and cannot be used again.

All points with kind other than : t enpor ar y are stored within the data structures of the editor buffer so they can be
updated when the text changes. A point can be removed from the buffer by edi t or : del et e- poi nt, and point objects
are also destroyed if their buffer iskilled.

editor:point-kind Function
edi tor: poi nt-ki nd point => kind

Returns the kind of the point, whichis: t enporary, : bef ore-insert or: after-insert.

editor:current-point Function
edi tor:current-point => point

Returns the current point. See also edi t or : buf f er - poi nt .

editor:current-mark Function
editor:current-mark &optional pop-p no-error-p => point

Returns the current mark. If pop-pist, the mark ring is rotated so that the previous mark becomes the current mark. If
no mark is set and no-error-pist, ni | isreturned; otherwise an error issignaled. The default for both of these optional
argumentsisni | .

editor:set-current-mark Function

edi tor:set-current-mark point

Sets the current mark to be point.

editor:point= Function
edi tor: poi nt = pointl point2 => boolean

Returns non-nil if pointl is at the same offset as point2 in the buffer.

editor:point/= Function

edi tor: poi nt/= pointl point2 => boolean

Returns non-nil if pointl is at a different offset from point2 in the buffer.

147

6 Advanced Features

editor:point<
edi tor: poi nt < pointl point2 => boolean

Returns non-nil if pointl is before point2 in the buffer.

editor:point<=

edi t or: poi nt <= pointl point2 => boolean

Returns non-nil if pointl is before or at the same offset as point2 in the buffer.

editor:point>

edi t or: poi nt > pointl point2 => boolean
Returns non-nil if pointl is after point2 in the buffer.
editor:point>=
edi t or: poi nt >= pointl point2 => boolean
Returns non-nil if pointl is after or at the same offset as point2 in the buffer.

editor:copy-point

edi tor: copy- poi nt point &opti onal kind new-point => new-point

Function

Function

Function

Function

Function

Makes and returns a copy of point. The argument kind can takethevalue: bef ore-i nsert,: after-insert, or

:tenporary. If new-point is supplied, the copied point is bound to that as well as being returned.

editor:delete-point

edi tor: del et e- poi nt point
Deletes the point point.

This should be done to any non-temporary point which is no longer needed.

editor:move-point
edi t or: nove- poi nt point new-position

Moves point to new-position, which should itself be a point.

editor:start-line-p

editor:start-1line-p point => boolean

Returnst if point isimmediately before the first character in aline, and ni | otherwise.

editor:end-line-p

edi tor:end-1ine-p point => boolean

Returnst if point isimmediately after the last character inaline, and ni | otherwise.

editor:same-line-p
edi tor:sane-line-p pointl point2 => boolean

Returnst if pointl and point2 are on the same line, and ni | otherwise.

148

Function

Function

Function

Function

Function

6 Advanced Features

editor:save-excursion Macro

edi t or: save- excursi on &rest body
Saves the location of the point and the mark and restores them after completion of body. This restoration is accomplished
even when there is an abnormal exit from body.

editor:with-point Macro
edi tor:w th-point point-bindings & est body

point-bindingsisalist of bindings, each of the form (var point [kind]) . Each variable var is bound to a new point
which is acopy of the point point though possibly with a different kind, if kind is supplied. If kind is not supplied, then
the new point haskind : t enpor ary.

The forms of body are evaluated within the scope of the point bindings, and then the pointsin each variable var are
deleted, asif by edi t or : del et e- poi nt . Each point var is deleted even if there was an error when evaluating body.

The main reason for using wi t h- poi nt to create non-temporary pointsisto allow body to modify the buffer while
keeping these points up to date for later use within body.

6.3.5 Regular expression searching

editor:regular-expression-search Function

edi tor:regul ar - expr essi on-search point pattern &ey forwardp prompt limit to-end brackets-limits => match-len,
brackets-limits-vector

Search for pattern starting from point.

point must be an edi t or : poi nt or ni |, meaning the result of calling edi t or : curr ent - poi nt .

pattern can beastring, al w. pr econpi | ed-r egexp (the result of | w. pr econpi | e-regexp), orni | .
forwardp is aboolean (default value t) specifying the direction to search.
prompt is a string used to prompt for a pattern when patternisni | .

limit should beni | or anedi t or: poi nt specifying alimit for the search.

to-end is aboolean (default valuet), specifying whether to move the point to the end of the match when searching
forward.

brackets-limitsis a boolean specifying whether r egul ar - expr essi on- sear ch should return a vector of brackets-
limits.

regul ar - expr essi on- sear ch performs a search starting from point for the pattern, in the direction specified by
forwardp, up to to limit if specified, or the buffer's end (when forwardp is non-nil) or the buffer's start (when forwardp is
ni |). If it succeeds, it then moves the point, either to the end of that match when both forwardp and to-end are non-nil
(the default), or to the beginning of the match.

When pattern is non-nil it must be either a string or a precompiled pattern created with | w. pr econpi | e- r egexp. If
patternisastring, r egul ar - expr essi on- sear ch "precompiles’ it before searching, so using a precompiled pattern is
more efficient when using the same pattern repeatedly.

If patternisni |, regul ar - expr essi on- sear ch first prompts for a pattern in the echo area, using the prompt. If
pattern is non-nil, prompt is ignored.

Return values: If r egul ar - expr essi on- sear ch issuccessful, it returns the length of the string that it matched, and if

149

6 Advanced Features

brackets-limitsis non-nil, a second value which is a vector of the limits of the matches of each\ (and\) pair inthe
pattern. The meaning of the vector is described in the manual entry for | w: fi nd-r egexp-i n-stringinthe
LispWorks® User Guide and Reference Manual.

Compatibility note: r egul ar - expr essi on- sear ch was exported but not documented in LispWorks 6.1 and earlier
versions. brackets-limits was introduced in LispWorks 7.0.

See also:
I w: find-regexp-in-string,|wregexp-find-synbolsandlw preconpil e-regexp and 28.7 Regular
expression syntax in the LispWorks® User Guide and Reference Manual.

6.3.6 The echo area

editor:message Function

edi t or: message string & est args

A message is printed in the Echo Area. The argument string must be a string, which may contain formatting characters
to beinterpreted by f or mat . The argument args consists of arguments to be printed within the string.

editor:clear-echo-area Function

edi tor:cl ear-echo-area &optional string force

Clears the Echo Area. The argument string is then printed in the Echo Area. If forceis non-nil, the Echo Areaiscleared
immediately, with no delay. Otherwise, there may be adelay for the user to read any existing message.
6.3.7 Editor errors

Many editor commands and functions signal an error on failure (using edi t or : edi t or - er r or asdescribed below). This
causes the current operation to be aborted.

In many cases, the user will not want the operation to abort completely if one of the editor commands it usesis not
successful. For example, the operation may involve a search, but some aspects of the operation should continue even if the
search is not successful. To achieve this, the user can catch the edi t or : edi t or - er r or using amacro such as

handl er - case.

For example, one part of an application might involve moving forward 5 forms. If the current point cannot be moved forward
five forms, generally the editor would signal an error. However, this error can be caught. The following trivial example
shows how a new message could be printed in this situation, replacing the system message.

(editor:defcommand "Five Forns" (p)

"Tries to nove the current point forward five forns,
printing out an appropriate nessage on failure."
"Tries to nove the current point forward five forns."
(handl er - case

(editor:forward-formcomand 5)

(editor:editor-error (condition)

(editor: message "could not nove forward five"))))

editor:editor-error Function

editor:editor-error string & est args

By default this prints a message in the Echo Area, sounds a beep, and exits to the top level of LispWorks, aborting the
current operation. The argument string must be a string, which isinterpreted as a control string by f or mat . Aswith
edi t or: nessage, args can consist of arguments to be processed within the control string.

150

http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_format.htm

6 Advanced Features

The behavior is affected by br eak-on-editor-error.

6.3.8 Files

editor:find-file-buffer Function

editor:find-fil e-buffer pathname &opti onal check-function

Returns a buffer associated with the file pathname, reading the file into anew buffer if necessary. The second value
returned ist if anew buffer is created, and ni | otherwise. If the file already existsin a buffer, its consistency isfirst
checked by means of check-function. If no value is supplied for check-function,

edi t or: check-di sk-versi on- consi st ent isused.

editor:set-buffer-name-directory-delimiters Function

editor:set-buffer-name-directory-delimters &key prefix postfix separator display-p

Thefunction edi t or : set - buf f er - name- di rect ory- del i mi t er s controls the naming of buffersthat are
associated with files with the same name.

For a buffer associated with afile, the editor names the buffer using the file's name. Each buffer must have a unique
name, so if you open several files with the same name (in different directories) then the editor has to choose different
names for these buffers. By default, the editor resolves this situation by changing the name of all such buffersto be the
file name followed by enough directory components to make it unique. The format of these unique namesis:

filename prefix comp-1 separator comp-2 separator ... postfix

where comp-1, comp-2 ... are directory components. Note that this feature is new in LispWorks 8.0 and in previous
versions the editor just added <number> after the filename, where number is an increasing integer.

prefix setsthe prefix to use. If itisni | (the default), the prefix is not changed. Otherwise, it must be astring or a
character.

postfix sets the postfix to use. If itisni | (the default), the postfix is not changed. Otherwise, it must be astring or a
character.

separator setsthe directory separator to use. If itisni | (the default), the separator is not changed. Otherwise, it must be
astring or acharacter.

Note that if you want any of prefix, postfix and separator to be empty, you need to pass an empty string.

display-p controls whether this name format is used. If it is non-nil, then the naming uses the format above. If itisni |,
the naming uses the pre LispWorks 8.0 format with an integer suffix. If display-p isnot supplied, its setting is not
changed.

Theinitial settingsare asif edi t or : set - buf f er - nane- di rect ory-del i nmi t ers was called likethis:

(set-buffer-nane-directory-delinmters :prefix "<"
spostfix ">"
:separator "/"
:display-p t)

Whenedi t or: set - buf f er-name-di rect ory-del i mit ers iscaled and whenever a buffer is created or deleted,
the editor checksif it creates or eliminates a clash, and if it does then the editor recomputes the names of all the buffers
that are affected.

For example, if you edit afile in the editor (see Find File) with path/ conpa- 1/ conpb- 1/ fi | enane, then the buffer
isnamed fi | ename. Suppose you then edit another file/ conpa- 1/ conpb- 2/ fi | enanme. Now the first buffer is

151

6 Advanced Features

renamed asf i | ename<conpb- 1>, and the second buffer isnamed f i | enanme<conpb- 2>. If you close the first buffer,
then the second buffer isrenamed to f i | enanme because there is no longer aclash.

editor:fast-save-all-buffers Function

editor: fast-save-all-buffers &optional ask

Saves al modified buffers which are associated with afile. If ask is non-nil then confirmation is asked for before saving
each buffer. If askisnot set, all buffers are saved without further prompting.

Unlike the editor command Save All Files this function can be run without any window interaction. It isthus suitable for
use in code which does not intend to allow the user to leave any buffers unsaved, and from the console if it is necessary
to save buffers without re-entering the full window system.

editor:check-disk-version-consistent Function

edi t or: check-di sk-versi on-consi st ent pathname buffer

Checks that the date of the file pathname is not more recent than the last time buffer was saved. If pathname is more
recent, the user is prompted on how to proceed. Returnst if there is no need to read the file from disk and ni | if it
should be read from disk.

editor:buffer-pathname Function

edi tor: buf f er - pat hnanme buffer => pathname

Returns the pathname of the file associated with buffer. 1f no file is associated with buffer, ni | isreturned.

editor:set-pathname-load-function Function

edi tor: set - pat hnane- | oad- f uncti on &key type load-function |oad-function-finder
Sets the function to use when loading files with type type.

edi t or: set - pat hnane- | oad- f unct i on affects what the command L oad File does, and what loading in the
LispWorks IDE using File > Load does. It does not affect what the Common Lisp | oad function does.

typeis astring specifying the pat hnane- t ype of afilename.

In the description below, aload function means afunction or afbound symbol that takes one argument, a pathname
designator, and "loads" it in some appropriate way.

If load-function-finder is non-nil, it must be a function that takes one argument, a pathname designator, and returns a
load function or ni | . If it returns aload function, thisfunction is called to load the file. If it returnsni | , the normal
processing is done, which means calling | oad with the pathname designator without the type.

If load-function-finder is non-nil, load-function isignored. Otherwise, load-function specifies the load function to use.
If both load-function-finder and load-function are ni | , any previous setting for type is removed.
Each call toedi t or: set - pat hnane- | oad- f unct i on replaces the setting of any previous call with the same type.

For example, the ASDF integration examplein (exanpl e-edit-file "m sc/asdf-integration.lisp") uses
the following call to cause the LispWorks IDE to load fileswith type " asd" by calling asdf : | oad- asd:

(editor:set-pathname-1oad-function :type "asd" :load-function 'asdf:| oad-asd)

Note: edi t or: set - pat hname- | oad- f unct i on was added in LispWorks 8.0.

152

http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_pn_hos.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm
https://common-lisp.net/project/asdf/

6 Advanced Features

6.3.8.1 File encodings in the editor

In an application which writes editor buffersto file, you can do this to set the external format of a given buffer:

(setf (editor:buffer-external-format buffer) ef-spec)

You can also set aglobal default external format for editor buffers:

(setf (editor:variable-value 'editor:output-fornat-default
: gl obal)
ef-spec)

Then ef-spec will be used when a buffer itself does not have an external format.

See 3.5.3 Unicode and other file encodings for afull description of the editor's file encodings interface.

6.3.9 Inserting text

editor:insert-string Function

editor:insert-string point string &optional start end

Inserts string at point in the current buffer. The arguments start and end specify the indices within string of the substring
to beinserted. The default valuesfor start and end are O and (| engt h string) respectively.

editor:kill-ring-string Function
editor:kill-ring-string &optional index
Returns either the topmost string on the kill ring, or the string at index places below the top when index is supplied.

The editor kill ring stores the strings copied by the editor, in order to allow using them later.

editor:points-to-string Function
editor:points-to-string start end => string

Returns the string between the points start and end.

6.3.10 Indentation

editor:*indent-with-tabs* Variable

Controls whether indentation commands such as | ndent and I ndent Form insert whitespace using #\ Space or #\ Tab
characters when changing the indentation of aline.

Theinitial valueisni | , meaning that only the #\ Space character is inserted.

A truevauefor edi t or: *i ndent - wi t h-t abs* causes the indentation commands to insert #\ Tab characters
according to the value of spaces- f or - t ab and then pad with #\ Space characters as needed.

6.3.11 Lisp

editor:*find-likely-function-ignores* Variable

Contains alist of symbolslikely to be found at the beginning of aform (such asappl vy, f uncal |, def un, def net hod,
def generi c).

153

http://www.lispworks.com/documentation/HyperSpec/Body/f_apply.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_funcal.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defun.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defgen.htm

6 Advanced Features

editor:*source-found-action* Variable

This variable determines how definitions found by the commands Find Source, Find Source for Dspec and Find Tag
are shown. The value should be alist of length 2.

Thefirst element controls the positioning of the definition: whent , show it at the top of the editor window; when anon-
negative fixnum, position it that many lines from the top; and when ni | , position it at the center of the window.

The second element can be: hi ghl i ght , meaning highlight the definition, or ni | , meaning do not highlight it.

Theinitial value of *sour ce- f ound- acti on* is(nil :highlight).

6.3.12 Movement

editor:line-end Function
editor:line-end point

Moves point to be located immediately before the next newline character, or the end of the buffer if there are no
following newline characters.

editor:line-start Function

editor:line-start point

Moves point to be located immediately after the previous newline character, or the start of the buffer if there are no
previous newline characters.

editor:character-offset Function

editor:character-offset point n

Moves point forward n characters. If nisnegative, point moves back n characters.

editor:word-offset Function

edi tor:word-of fset point n

Moves point forward n words. If nisnegative, point moves back n words.

editor:line-offset Function

editor:line-offset point #&n &opti onal to-offset

Moves point n lines forward, to alocation to-offset charactersinto the line. If nis negative, point moves back n lines. If
to-offset isni | (its default value), an attempt is made to retain the current offset. An error issignaled if there are not n
further linesin the buffer.

editor:form-offset Function

editor:formoffset point n &ptional form depth

Moves point forward n Lisp forms. If nis negative, point moves back n forms. If formist (its default value) then atoms
are counted as forms, otherwise they are ignored. Before point is moved forward n forms, it first jumps out depth levels.
The default value for depth isO.

154

6 Advanced Features

6.3.13 Prompting the user
The following functions can be used to prompt for some kind of input, which is generally typed into the Echo Area.

The following keyword arguments are common to a number of prompting functions.

: must - exi st Specifies whether the value that isinput by the user must be an existing value or not. If
: must - exi st isnon-nil, the user is prompted again if a non-existent value isinput.

s defaul t Defines the default value that is selected if an empty string is input.

:defaul t-string Specifies the string that may be edited by the user (with Insert Par se Default).

. pronpt Defines the prompt that is written in the Echo Area. Most prompting functions have a default
prompt that is used if no value is supplied for : pr onpt .

thelp Provides a help message that is printed if the user types " ?".

editor:prompt-for-file Function

editor:pronpt-for-file &ey direction must-exist create-directories default default-string prompt help
Prompts for afile name, and returns a pathname.

:direction You can specify direction :input (when expecting to read thefile) or direction : out put (when
expecting to write thefile). This controls the default value of must-exist, which isfalse for
direction : out put and true otherwise.

:create-directories

If create-directoriesistrue, then the user is prompted to create any missing directories in the path
she enters. The default isfalse for direction : out put and true otherwise.

See above for an explanation of the other arguments.

editor:prompt-for-buffer Function
edi tor:pronmpt-for-buffer &key prompt must-exist default default-string help => buffer

Prompts for a buffer name, and returns the buffer. See above for an explanation of the keywords.

The default value of must-existist . If must-exist isni | and the buffer does not exist, it is created.

editor:prompt-for-integer Function
edi tor:pronpt-for-integer &key prompt must-exist default help => integer

Prompts for an integer. See above for an explanation of the keywords.

editor:prompt-for-string Function
editor:pronmpt-for-string &ey prompt default default-string clear-echo-area help => string

Prompts for astring. No checking is done on the input. The keyword clear-echo-area controls whether or not the echo
areais cleared (that is, whether the text being replaced is visible or not). The default for thiskeywordist . See above for
an explanation of the remaining keywords.

editor:prompt-for-variable Function
editor:pronpt-for-variabl e &ey must-exist prompt default default-string help => name, symbol

155

6 Advanced Features

Prompts for an editor variable. See above for an explanation of the keywords. The default value of must-exist ist .

6.3.14 In-place completion

editor:complete-in-place Function

edi tor: conpl ete-in-place complete-func &key extract-func skip-func insert-func
Performs a non-focus completion at the editor current point.
complete-func should be a function designator with signature:

conpl et e-func string &optional user-arg => result

string should be a string to complete. user-arg is the second return value of extract-func, if thisisnot ni | . result should
be alist of itemsto be displayed in the list panel of the non-focus window.

extract-func must be a function designator with signature:
extract-func point => string, user-arg
point should be a Point object.

extract-func needs to move point to the beginning of the text that will be replaced if the user confirms. It should return
two values: string is the string to complete, and user-arg can be any Lisp object. string is passed to the function
complete-func, and if user-arg is non-nil it is also passed.

The default value of extract-func is a function which searches backwards until it finds a non-al phanumeric character, or
the beginning of the buffer. It then moves its point argument forward to the next character. The function returnsits first
value string the string between this and the original location of the point, and it returns ni | as the second value user-arg.

skip-func, if supplied, must be a function designator with signature:
ski p-func point
point should be a Point object.

point will be used as the end of the region to replace by the completion. At the call to skip-func, the point is located at
the same place as the point that was passed to extract-func (after it moved). skip-func needsto move point forward to the
end of the text that should be replaced when the user wants to do the completion. If skip-func is not supplied, the end
point is set to the current point.

insert-func, if supplied, must be a function designator with signature:
i nsert-func result string user-arg => string-to-use

result is the item selected by the user, string is the original string that was returned by extract-func, and user-arg isthe
second value returned by extract-func (regardless of whether thisvalueisni |). It must return a string, string-to-use,
which isinserted as the the completion.

If insert-func is not supplied, the completion item isinserted. If itisnot astring it isfirst converted by
prinl-to-string.

When edi t or : conpl et e-i n-pl ace iscaled, it makes a copy of the current point and passes it to extract-func. It then
copies this point and positionsit either using skip-func or the current point. These two points define the text to be
replaced. edi t or: conpl et e- i n- pl ace then calls complete-func, and use the result to raise a non-focus window next
to the current point. The interaction of thiswindow is as described in the CAPI User Guide and Reference Manual.

Note: edi t or: conpl et e-wi t h- non- f ocus isadeprecated synonym for edi t or : conpl et e-i n-pl ace.

156

http://www.lispworks.com/documentation/HyperSpec/Body/f_wr_to_.htm

6 Advanced Features

6.3.15 Editor variables

editor:define-editor-variable Function

edi tor: define-editor-variabl e name value &opti onal documentation

Defines an editor variable.

name Symbol naming the variable.
value The value to assign to the variable.
mode A string naming a mode.
documentation A documentation string.

Themacroedi t or : def i ne-edi t or-vari abl e definesaglobal editor variable. There is only one global value, so
repeated uses of edi t or : defi ne- edi t or - vari abl e overwrite each other.

edi tor: define-editor-vari abl e givesareadable value of defining avariable, and is recognized by the LispWorks
source code |ocation system. However variables can also be defined dynamically by calling
(setf editor:variabl e-val ue). Variable values may be accessed by edi t or: vari abl e- val ue.

A variable has only one string of documentation associated with it. edi t or : vari abl e- val ue overwrites the existing
documentation string, if thereisany. You can see the documentation by the command Describe Editor Variable. It can
can be accessed programmatically by edi t or : edi t or - vari abl e- docunent at i on.

Note: for backwards compatibility name can also be a string, which is converted to a symbol by uppercasing, replacing
#\ Space by #\ -, and interning in the EDI TOR package. This may lead to clashes and so you should use a symbol for
name, not a string.

editor:define-editor-mode-variable Function

edi tor: def i ne-edi t or-node-vari abl e name mode value &opti onal documentation

Defines an editor variable in the specified mode.

mode A string naming a mode.
name, value Asfor editor: define-editor-variable.
documentation Asforeditor: define-editor-vari abl e, except that

edi tor: define-editor-node-vari abl e installs the documentation only if the editor
variable does not aready have any documentation.

edi tor: defi ne-editor-node-vari abl e defines avariable in the specified mode. Thereisone value per variable
per mode.

edi tor: define-editor-node-vari abl e givesareadable value of defining avariable in amode, and is recognized
by the LispWorks source code lacation system. However mode variables can a so be defined dynamically by calling
(setf editor:variabl e-val ue). Mode variable values may be accessed by edi t or : vari abl e- val ue.

editor:editor-variable-documentation Function

edi tor: editor-vari abl e-docunent ati on editor-variable-name => documentation

editor-variable-name A symbol naming an editor variable.

Returns the documentation associated with the editor variable, if any.

Note: For backwards compatibility a string editor-variable-name is al so accepted, as described for

157

6 Advanced Features

edi tor: defi ne-editor-vari abl e.

editor:variable-value Accessor

edi tor:vari abl e-val ue name &opti onal kind where => value

The reader returns the value of the editor variable name, where nameisasymbol. An error issignaled if the variableis
undefined. The argument kind can take thevalue: current, : buf fer, : gl obal or: node. The default value of kind is
current.

When kind is: curr ent the argument where should be ni | (the default, meaning the current buffer) or an editor buffer
object or the name of a buffer. The variable value for the specified buffer is returned or (if there is no current buffer) then
the global variable value is returned.

kind can also be: buf f er , and then where should be an editor buffer object.

For example, the code given below will, by default, return the value : ask- user.

(editor:variabl e-val ue
"editor:add-new ine-at-eof-on-witing-file)

The value of variables may also be atered using the setter of this function. For example, the code given below will alow
buffers to be saved to file without any prompt for a missing newline.

(setf
(editor:variabl e-val ue
"editor:add-new ine-at-eof-on-witing-file)
nil)

editor:variable-value-if-bound Function

edi tor:vari abl e-val ue-i f - bound name &opti onal kind where => value

Returns the value of the variable name. If the variable is not bound, ni | isreturned. The arguments are as for
edi tor:vari abl e-val ue.

editor:buffer-value Function

edi tor: buf f er-val ue buffer name &optional errorp => value
Accesses the value of the editor variable name in the buffer specified by buffer.
name should be a symbol and buffer should be a point object or a buffer object.

If the editor variable is undefined and errorp istrue, an error is signaled. If the variable is undefined and errorp isfalse,
ni | isreturned. The default value of errorpisni | .

6.3.16 Windows

editor:current-window Function

edi tor: current-w ndow => window

Returns the current window.

editor:redisplay Function

edi tor:redispl ay

158

6 Advanced Features

Redisplays any window that appearsto need it. In general, the contents of awindow may not be redisplayed until thereis
an event to provokeit.

Note: edi t or: r edi spl ay will update a modified editor buffer only when that buffer isthe
editor:current-buffer. Takecaretocall edi t or: redi spl ay in an appropriate context.

editor:window-text-pane Function

edi t or: wi ndow- t ext - pane window => pane

Returnsthe capi : edi t or - pane associated with an editor window.

6.3.17 Faces

editor:face System Class

An instance of the system classedi t or : f ace describesthe "face" of some text. It specifies the colors of the text and
background, the font, and whether the text is bold, italic or underlined.

A editor:faceiscreated by calingedi t or : make- f ace. Itisused by various interface functions, for example
hcl : code- cover age-set-editor-colorsandhcl :wite-string-wth-properties. Notethat in general
you can use aface name, that is associated with aedi t or : f ace by edi t or : make- f ace, instead of the actual
editor: face object.

editor:make-face Function

edi tor: make-face name &key if-exists foreground background font bold-p italic-p underline-p inverse-p documentation
=> face

name A symbol.
if-exists nil,:overwiteor:error.
foreground, background

CAPI colorsorni | .

font A graphi cs-ports:font objectornil.

bold-p, italic-p, underline-p, inverse-p

Booleans.
documentation A stringorni | .
face A edi t or: face object.

Thefunction edi t or: make-f ace returnsaedi t or : f ace , either new or existing, and may associate it with name.
edi t or : f ace objects are used by some interface function such ashcl : code- cover age- set - edi t or - col or s and
hcl :wite-string-wth-properties.

If nameisnon-nil, edi t or : make- f ace first checksif aedi t or : f ace with this name already exists. If it exists, then if
-exists controls what happens:

ni | Return the existing edi t or : f ace object asit is (the default).

soverwite Reset the existing edi t or : f ace to default values and set its slots using the supplied keywords.
The existing face is returned. This also causes Editor windows to update, and where thisfaceis
used the display will change accordingly.

159

6 Advanced Features

serror Signal an error.

If thereisno existing edi t or : f ace, either because nameisni | or because it has not been made yet,

edi t or: make- f ace createsanew edi t or : f ace from the supplied keywords. If nameisnon-nil, theedi t or : f ace
is associated with name, so future callsto edi t or : make- f ace with the same name will find it and name can be used in
interface functions.

None of the keywordsis required, and they all default to ni | . For foreground, background and font, ni I means use the
default value, that is the color or font that the text would have drawn if the face was not applied.

foreground and background specify the colorsto use. When they are non-nil, they must be a CAPI color. See the chapter
"The Color System” in the CAPI User Guide and Reference Manual for description of colors.

font specifies the font to use. It must be agr aphi cs- ports: f ont object, typically the result of

gr aphi cs-ports: find-best-font. See"Portable font descriptions" in the "Drawing - Graphics Ports" chapter in
the CAPI User Guide and Reference Manual for details. Note that the editor does not work properly with fonts of
different height.

bold-p, italic-p and underline-p specify whether the text should be bold, italic or underlined respectively.

inverse-p specifies that the foreground and background colors are swapped, which causes the text to be drawn in the
current background color using the current foreground color as the background. The effective background color is either
the background argument if it is non-nil, or the default otherwise, and the same for the effective foreground color.

documentation is stored inthe edi t or : f ace, and can be retrieved by calling cl : docunent ati on withedi t or: f ace
as the doc-type argument. cl : docunent at i on can be called either with aedi t or : f ace object or with name.

6.3.18 Examples

6.3.18.1 Example 1

The following simple example creates a new editor command called Current Li ne.

(editor:defconmand "Current Line" (p)
"Conputes the |ine nunber of the current point and
prints it in the Echo Area"
"Prints the Iine nunber of the current point"
(let* ((cpoint (editor:current-point))
(svpoi nt (editor:copy-point cpoint))

(count 0))
(edi tor: begi nni ng-of - buf fer-comand nil)
(1 oop
(if (editor:point> cpoint svpoint)
(return))
(unl ess (editor:next-line-comrand nil)
(return))

(i ncf count))
(editor: move-point cpoint svpoint)
(editor: message "Current Line Nunber: ~S " count)))

6.3.18.2 Example 2

This example creates a new editor command called Goto Line which moves the current point to the specified line number.

(editor:defcommand "Goto Line" (p)
"Moves the current point to a specified |line nunber.
The nunber can either be supplied via the prefix

160

http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_docume.htm

6 Advanced Features

argunment, or, if this is nil, it is pronpted for."
"Moves the current point to a specified |line nunmber."
(let ((line-nunber
(or p (editor:pronpt-for-integer
:pronpt "Line nunber: "
chelp "Type in the nunber of the line to

go to"))))
(editor: beginni ng-of -buf fer-comand nil)
(editor:next-line-command |ine-nunber)))

6.3.18.3 Example 3

The following example illustrates how text might be copied between buffers. First, string isset to all thetextinfr om buf .
Thistext isthen copied to the end of t o- buf .

(defun copy-string (frombuf to-buf)
(let ((string (editor:points-to-string
(editor:buffers-start from buf)
(editor:buffers-end frombuf))))
(editor:insert-string (editor:buffers-end to-buf) string)))

To test this example, two buffersnamedt 1 and t 2 should be created. Then, to copy all thetext fromt 1 to theend of t 2:

(copy-string (editor:buffer-fromname "t1")
(editor:buffer-fromname "t2"))

6.4 Editor source code

The section does not apply to LispWorks Personal Edition.

LispWorks comes with source code for the editor, which you can refer to when adding editor extensions.

6.4.1 Contents

Thedirectory | i b/ 8- 1- 0- 0/ src/ edi t or/ contains most of the source files of the LispWorks editor. Some low-level
source code is not distributed.

6.4.2 Source location

To enable location of editor definitions by Find Sour ce and related commands, configure LispWorks as described under 13.7
Finding source code in the LispWorks® User Guide and Reference Manual.

6.4.3 Guidelines for use of the editor source code

Some care is needed when working with the supplied editor source code, to ensure that you do not compromise the IDE or
introduce a dependency on a particular release of LispWorks.

In particular please note:

» The editor source code may not match the compiled code in the LispWorks image exactly, for example if editor patches
have been loaded.

» Modifications to the EDI TOR package definition are not allowed.

161

6 Advanced Features

» Redefining existing definitionsis not recommended. It is better to define anew command to do what you want. If you
find abug or have a useful extension to an existing definition then please let us know.

» Do not rely on the expansion of exported macros.

 If you use any internal (that is, not exported) EDITOR symbols, please tell us, so we can consider how to support your
requirements. In addition, some internal macros have been removed from the LispWorks image and these should not be
used.

162

7 Self-contained examples

This chapter enumerates the set of examplesin the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open thefilein the Editor tool in the LispWorks IDE. Evaluating the call to exanpl e-edi t-fi | e shown below will
achieve this.

2. Compile the example code, by Ct r | +Shi f t +B.

3. Run the example command, by Al t +X command-name or by the keystroke defined in an edi t or : bi nd- key form.

4. Read the comment at the top of the file, which may contain further instructions on how to interact with the example.

7.1 Example commands

(exanple-edit-file "editor/comuands/spel | -word")
(exanple-edit-file "editor/commands/space-show arglist")
(exanple-edit-file "editor/conmands/ del et e-del et es-sel ecti on")
(exanple-edit-file "editor/commuands/split-line")

(exanmple-edit-file "editor/commands/insert-date")

7.2 Syntax coloring example
Thisfileillustrates away to implement Common Lisp syntax coloring in the editor:

(exanple-edit-file "editor/syntax-col oring/syntax-col oring")

Note: the editor now has built-in syntax coloring for Lisp mode buffers. If you run the example code above, it will override
the built-in syntax coloring.

163

Glossary

Abbrev

An abbrev (abbreviation) is a user defined text string which, when typed into a buffer, may be expanded into another
string using Abbrev Mode. Typing can therefore be saved by defining short strings to be expanded into frequently used
longer words or phrases.

Abbrevs should not be confused with the abbreviated symbol completion implemented by the command Abbreviated
Complete Symbol.

Abbrev Mode

Abbrev mode is a minor mode which allows abbrevs to be automatically expanded when typed into a buffer.

Attribute Line

A first linein asourcefile of the form:
-*- Mode: Lisp; Package: CL-USER;, -*-

isthe attribute line. Its keys and values are processed by editor commands such as Process File Options.

Auto-Fill Mode
Auto-fill mode is aminor mode which allows lines to be broken between words at the right margin automatically as the
text isbeing typed. This meansthat Ret ur n does not have to be pressed at the end of each line to simulate filling.
Auto-Saving

Auto-saving is the automatic, periodic backing-up of the file associated with the current buffer.

Backup
When afileis explicitly saved in the editor, a backup is automatically made by writing the old contents of the fileto a
backup before saving the new version of the file. The name of the backup file isthat of the original file followed by a~
character.

Binding
A binding is made up of one or more key sequences. A command may have a default binding associated with it, which
executes that command. Bindings provide a quick and easy way to execute commands.

Buffer
A buffer isatemporary storage area used by the editor to hold the contents of afile while the process of editing is
taking place.

Case Conversion

Case conversion means changing the case of text from lower to upper case and vice versa.

164

Glossary

Completion
Completion is the process of expanding apartial or abbreviated name into the full name. Completion can used for
expanding symbols, editor command names, filenames and editor buffer names.

Control Key
The Control key (Ct r |) isused as part of many key sequences. Ct r| must be held down while pressing the required
character key.

Ctrl Key
See Control Key.

Current
The adjective current is often used to describe a point, buffer, mark, paragraph, and similar regions of text, as being the
text area or item on which relevant commands have an effect. For example, the current buffer is the buffer on which
most editor commands operate.

Cursor
The cursor is the rectangle (in Emacs emulation) or vertical bar (in other emulations) seen in a buffer which indicates
the position of the current point within that buffer.

Customization

Customization means making changes to the way the editor works. The editor can be customized both in the short and
long term to suit the users requirements. Short term customization involves altering the way the editor works for the
duration of an editing session by using standard editor commands, while long term customization involves
programming the editor.

Default

A default is the value given to an argument if none is specified by the user.

Deleting

Deleting means removing text from the buffer without saving it. The alternative iskilling.

Echo Area
The Echo Areais a buffer used to display and input editor information. Commands are typed into this buffer and editor
produced messages are displayed here.

Emulation

The LispWorks Editor can behave like GNU Emacs, or like atypical editor on the Microsoft Windows platform. Keys,
cursors, behavior with selected text and other functionality differs. We use the term Microsoft Windows editor
emulation to denote this alternate behavior.

Escape Key

The Escape key (Esc) hasits own functionality but is mostly used in Emacs emulation in place of the Al t key when no
such key exists on akeyboard. Esc must be typed before pressing the required character key.

165

Glossary

Extended Command
Most editor commands can be invoked explicitly by using their full command names, preceded by the Al t +X key
sequence. A command issued in such away is known as an extended command.

Fill Prefix
Thefill prefix isa string which isignored when filling takes place. For example, if thefill prefix is; ; , then these
characters at the start of aline are skipped over when the text is re-formatted.

Filling
Filling involves re-formatting text so that each line extends as far to the right as possible without any words being
broken or any text extending past a predefined right-hand column.

Global Abbrev

A global abbrev is an abbrev which can be expanded in all major modes.

History Ring
The history ring records Echo Area commands so that they can easily be repeated.

Incremental Search

Anincremental search isasearch which is started as soon as the first character of the search string is typed.

Indentation
Indentation is the blank space at the beginning of aline. Lisp, like many other programming languages, has
conventions for the indentation of code to make it more readable. The editor is designed to facilitate such indentation.
Insertion

Insertion is the process of inputting text into a buffer.

Keyboard Macro

A keyboard macro allows a sequence of editor commands to be turned into a single operation. Keyboard macros are
only available for the duration of an editing session.

Key Sequence
A key sequence is a sequence of characters used to issue, or partly issue, an editor command. A single key sequence
usually involves holding down one of two specially defined modifier keys (thatisCtr 1 and Al t), while at the same
time pressing another key.

Killing
Killing means removing text from a buffer and saving it in the kill ring, so that the text may be recovered at alater date.
The aternative is deleting.

Kill Ring

The kill ring stores text which has been killed, so that it may be recovered at alater date. Text can be re-inserted into a
buffer by yanking. Thereisonly onekill ring for al buffers so that text can be copied from one buffer to another.

166

Glossary

L ocation
A location isthe position of a point which is saved automatically such that you can revisit it by commands such as Go
Back.

Major Mode
Major modes govern how certain commands behave. They adapt afew editor commands so that their use is more
appropriate to the text being edited. For example, the concept of indentation is radically different in Lisp mode and
Fundamental mode. Each buffer is associated with one major mode.

Mark
A mark stores the position of a point in abuffer which is associated with the current region and may be used for
reference at alater date. More than one mark may be associated with a single buffer and saved in amark ring.

Mark Ring

The mark ring stores details of marks, so that previously defined marks can be accessed. The mark ring works like a
stack, in that marks are pushed onto the ring and can only be popped off on a"last in first out" basis. Each buffer hasits
own mark ring.

Meta Key

On most PC keyboards this key is synonymous with the Al t key. However, there are many different types of keyboard,
and the Met a key may not be marked with "Alt" or "Meta'. It may be marked with a special character, such asa
diamond, or it may be one of the function keys— try F11.

In Emacs emulation, Met a must be held down while pressing the required character key. As some keyboards do not
have a Met a key, the Escape (Esc) key can be used in place of Met a.

On Cocoa, you can configure "Meta' by choosing Preferences... > Environment > Emulation.

Minor Mode

The minor modes determine whether or not certain actions take place. For example, when Abbrev mode is on, abbrevs
are automatically expanded when typed into a buffer. Buffers may possess any number of minor modes.

M ode

Each buffer has one or more modes associated with it: amajor mode and zero or more minor modes. Major modes
govern how certain commands behave, while minor modes determine whether or not certain actions take place.

Mode Abbrev

A mode abbrev is an abbrev which is expanded only in predefined major modes.

ModeLine

At the bottom of each buffer is a mode line that provides information concerning that buffer. The information displayed
includes name of the buffer, major mode, minor mode and whether the buffer has been maodified or not.

Newline

Newline is a whitespace character which terminates aline of text.

167

Glossary

Overwrite Mode

Overwrite mode is a minor mode which causes each character typed to replace an existing character in the text.

Page
A page istheregion of text between two page delimiters. The ASCII key sequence Ct r | +L constitutes a page delimiter
(asit starts a new page on most line printers).

Pane

A paneisthe largest portion of an editor window, used to display the contents of a buffer.

Paragraph

A paragraph is defined as the text within two paragraph delimiters. A blank line constitutes a paragraph delimiter. The
following characters at the beginning of aline are also paragraph delimiters:

Space Tab @- ')

Prefix Argument

A prefix argument is an argument supplied to a command which sometimes alters the effect of that command, but in
most cases indicates how many times that command is to be executed. This argument is known as a prefix argument as
it is supplied before the command to which it isto be applied. Prefix arguments sometimes have no effect on a
command.

Point

A point isa position in a buffer where editor commands take effect. The current point is generally between the

character indicated by the cursor and the previous character (that is, it actually lies between two characters). Many

types of commands (moving, inserting, deleting) operate with respect to the current point, and indeed move that point.
Recursive Editing

Recursive editing occurs when you are allowed to edit text while an editor command is executing.

Region
A region isthe area of text between the mark and the current point. Many editor commands affect only a specified
region.

Register

Registers are named slots in which locations and regions can be saved for later use.

Regular Expression Searching

A regular expression (regexp) allows the specification of a search string to include wild characters, repeated characters,
ranges of characters, and aternatives. Strings which follow a specific pattern can be located, which makes regular
expression searches very powerful.

Replacing

Replacing means substituting one string for another.

168

Glossary

Saving

Saving means copying the contents of a buffer to afile.

Scrolling
Scrolling means slightly shifting the text displayed in a pane either upwards or downwards, so that a different portion
of the buffer is displayed.

Sear ching

Searching means moving the current point to the next occurrence of a specified string.

Sentence

A sentence begins wherever a paragraph or previous sentence ends. The end of a sentence is defined as consisting of a
sentence terminating character followed by two spaces or a newline. The following characters are sentence terminating
characters:

? 1

Tag File
A tag file is one which contains information on the location of Lisp function definitionsin one or more files. For each
filein adefined system, the tag file contains a relevant file name entry, followed by names and positions of each
defining form in that file. Thisinformation is produced by the editor and is required for some definition searches.
Transposition
Transposition involves taking two units of text and swapping them round so that each occupies the other's former
position.
Undoing
Commands that modify text in a buffer can be undone, so that the text reverts to its state before the command was
invoked.
Undo Ring
Anundo ring is used to hold details of modifying commands so that they can be undone at alater date. The undo ring
works like a stack, in that commands are pushed onto the ring and can only be popped off on a"last in first out" basis.
Variable (Editor)

Editor variables are parameters which affect the way that certain commands operate.

Whitespace

Whitespace is any consecutive run of the whitespace characters Space, Tab or Newline.

Window

A window is an object used by the window manager to display data. When the editor is called up, an editor window is
created and displayed.

169

Glossary

Window Ring

A window ring is used to hold details of all windows currently open.

Word

A word is a continuous string of alphanumeric characters (that is, the letters A—Z and numbers 0—-9). In most modes,
any character which is not alphanumeric is treated as aword delimiter.

Yanking

Yanking means inserting a previoudly killed item of text from the kill ring at arequired location. Thisis often known as
pasting.

170

| ndex

A
Abbrev Expand Only ~ 3.27: Abbreviations 79
Abbreviated Complete Symbol ~ 4.3.5: Indentation and Completion 112
abbreviation
add global 3.27: Abbreviations 79
add global expansion 3.27: Abbreviations 79
addmode 3.27: Abbreviations 79
add mode expansion 3.27: Abbreviations 79
appendtofile 3.27: Abbreviations 81
deleteall 3.27: Abbreviations 80
deleteglobal 3.27: Abbreviations 80
deletemode 3.27: Abbreviations 80
edit 3.27: Abbreviations 81
editor definition 3.27 : Abbreviations 78
expand 3.27: Abbreviations 79
list 3.27: Abbreviations 80
read fromfile 3.27: Abbreviations 81
savetofile 3.27: Abbreviations 81
undo last expansion ~ 3.27: Abbreviations 80
abbreviation commands 3.27: Abbreviations 78
Abbrev Mode 3.26.2: Minor modes 77, 3.27: Abbreviations 79
abbr ev- pat hnanme- def aul t s editor variable 3.27: Abbreviations 81
aborting editor commands 2.6.1: Aborting commands and processes 13, 3.1: Aborting commands and processes 16
aborting processes 2.6.1: Aborting commands and processes 13, 3.1: Aborting commands and processes 16
Abort Recursive Edit 3.31: Recursiveediting 87
Accessors
vari abl e-val ue 6.3.15: Editor variables 158
ActivateInterface 3.36: Interaction with the GUI and the IDE 96
Add Global Word Abbrev 3.27: Abbreviations 79
Add ModeWord Abbrev 3.27: Abbreviations 79
add-newl i ne-at-eof -on-witing-file editorvariable 352: Savingfiles 24
Al t +! Shell Command 3.34.1: Running shell commands directly fromthe editor 93
Al t +" Insert Double Quotes For Selection 4.4.4: Miscellaneous 116
Al t +# Insert Multi Line Comment For Selection ~ 4.6: Comments 118

Al t+' Word Abbrev Prefix Point ~ 3.27: Abbreviations 80

171

Index

Al t +(Insert Parentheses For Selection 4.7: Parentheses 119

Al't+) MoveOver) 4.7: Parentheses 120

Al t+, ContinueTagsSearch 4.3.2: Déefinition searching 107

Al t+. Find Source 4.3.2: Definition searching 105

Al't +/ Dynamic Completion 3.12: Insertingtext 50

Al t +; Indent for Comment 4.6: Comments 117

Al t +< Beginning of Buffer ~ 3.8: Movement 40

Al t +< Beginning Of Parse 3.29.3: Movementintheechoarea 84

Al t += Function Arglist ~ 4.3.6: Miscellaneous 112

Al't +> End of Buffer ~ 3.8: Movement 41

Al't+? FindTag 4.3.2: Ddfinition searching 107

Al t+@ Mark Word 3.9.1: Marks 44

Al t +[Backward Paragraph 3.8: Movement 39

Al't +\ DeleteHorizontal Space 3.11.1: Deleting Text 46

Al't +] Forward Paragraph 3.8: Movement 39

Al t +A Backward Sentence 3.8: Movement 39

Al't +A Debugger Abort 3.33.3: Debugger commands 91

Al 't +B Backward Word 3.8: Movement 38

Al t +B Debugger Backtrace 3.33.3: Debugger commands 91

Al t +B Echo AreaBackward Word ~ 3.29.3: Movementintheechoarea 84

Al t +Backspace EchoAreaKill PreviousWord 3.29.4: Deleting and inserting text inthe echo area 85
Al't +C CapitalizeWord 3.15: Caseconversion 52

Al t +C Debugger Continue 3.33.3: Debugger commands 91

Al t +Ctr| +. RotateActiveFinders 4.3.2: Definition searching 108

Alt+Ctrl+; KillComment 4.6: Comments 118

Alt+Crl +@ Mark Form 4.4.1: Movement, marking and indentation 114

Al t+Ctrl +\ Indent Region 3.18: Indentation 54

Al't +Ctr | +A Beginning of Defun 4.3.1: Movement, marking and specifying indentation 104
Al t+Ctrl +B Backward Form 4.4.1: Movement, marking and indentation 114
Alt+Ctrl +D DownlList 45.1: Movement 117

Al t+Ctrl +Del et e Backward Kill Form 4.4.2: Killingforms 115

Al t+Ctrl +E Endof Defun 4.3.1: Movement, marking and specifying indentation 104
Al t+Crl +F Forward Form 4.4.1: Movement, marking and indentation 114
Alt+Ctrl +H Mark Defun 4.3.1: Movement, marking and specifying indentation 104
Alt+Ctrl +1 Complete Symbol 4.3.5: Indentation and Completion 112

Al t+Ctrl +K Forward Kill Form 4.4.2: Killingforms 115

At +Ctrl +L Select PreviousBuffer ~ 3.20: Buffers 58

Alt+Ctrl +N ForwardList 4.5.1: Movement 116

172

Index

Alt+Ctrl +P BackwardList 4.5.1: Movement 116

Al t+Ctrl +Q Indent Form 4.4.1: Movement, marking and indentation 114
Al t +Ctr | +R 1Search Backward Regexp 3.23.2: Regular expression searching 71
At +Ctrl +S ISearch Forward Regexp 3.23.2: Regular expression searching 71
At +Ctrl +Shi ft +A Show Documentation 4.8: Documentation 121
Al't+Ctrl +Shi ft+L CirculateBuffers 3.20: Buffers 58

Alt+Ctrl +Space PopMark 39.1: Marks 43

Al t+Ctr| +T TransposeForms 4.4.4: Miscellaneous 116

Al't+Ctrl +U Backward UpList 45.1: Movement 117

Al t+Ctrl +W Append Next Kill ~ 3.11.2: Killingtext 48

At +Ctrl +X EvaluateDefun 4.9.2: Evaluation commands 122

Al t +Ctr| +Z Exit RecursiveEdit 3.31: Recursiveediting 87

Al't +D Kill Next Word ~ 3.11.2: Killingtext 47

Al t +Del et e Kill PreviousWord 3.11.2: Killingtext 47

Al t +E Debugger Edit 3.33.3: Debugger commands 92

Al t +E Forward Sentence 3.8: Movement 39

Al't +F Forward Word 3.8: Movement 38

Al't +G Fill Region 3.19.1: Fill commands 56

Al t +H Mark Paragraph 3.9.1: Marks 44

Al t +I Abbreviated Complete Symbol 4.3.5: Indentation and Completion 112
Al't +J Indent New Comment Line 4.6: Comments 118

Al t +K Find Matching Parse 3.29.2: Repeating echo area commands 84

Al t +K Forward Kill Sentence 3.11.2: Killingtext 48

Al t +K Reset EchoArea 3.29.6: Leavingtheechoarea 86

Al't +K Throw ToTop Level 3.33.1: Listener commands 89

Al't+L LowercaseWord 3.15: Caseconversion 51

Al't +M Back to Indentation ~ 3.18: Indentation 55

Al't +N Debugger Next 3.33.3: Debugger commands 92

Al't +N Down Comment Line 4.6: Comments 118

Al't +N History Next 3.33.2: History commands 90

Al t +N Next Parse 3.29.2: Repeating echo area commands 84

Al't +Newl i ne Indent New Comment Line 4.6: Comments 118

Al t +P Debugger Previous 3.33.3: Debugger commands 92

Al 't +P History Previous 3.33.2: History commands 90

Al t +P PreviousParse 3.29.2: Repeating echo area commands 84

Al t +P Up Comment Line 4.6: Comments 118

Al t +Q Fill Paragraph 3.19.1: Fill commands 56

Al't +R History Search 3.33.2: History commands 90

173

Index

Al 't +Shi ft +% Query Replace 3.23.3: Replacement 71
Al t +Shi ft +* DeleteIndentation 3.18: Indentation 55
Al t +Shi ft +M Walk Form 4.4.3: Macro-expansion of forms 116
Al t +Shi ft +R MovetoWindow Line 3.8: Movement 40
Al 't +Shi ft +~ Buffer Not Modified 3.20: Buffers 60
Al 't +Space Just OneSpace 3.11.1: Deleting Text 46
Al t +T TransposeWords 3.16: Transposition 53
Al t +Tab Expand FileName 3.6: Filename completion 31
Al t +U UppercaseWord 3.15: Caseconversion 52
Al t +V Debugger Print 3.33.3: Debugger commands 92
Al t +V Scroll Window Up 3.8: Movement 40
Al t +W SaveRegion 3.11.2: Killingtext 48
Al t +X Extended Command 2.5.2: Two waysto execute commands 12, 3.2: Executing commands 17
Al t +Y RotateKill Ring 3.12: Insertingtext 49
Alt+Z ZapToChar 3.11.2: Killingtext 49
Al 't +| Shell Command On Region 3.34.1: Running shell commands directly fromthe editor 93
Altkey 25.1: Modifier keys- Command, Ctrl, Alt and Meta 11
Append Next Kill ~ 3.11.2: Killingtext 48
AppendtoFile 35.2: Savingfiles 24
Append to Register 3.25: Registers 75
Append to Word Abbrev File 3.27: Abbreviations 81
Application Builder tool ~ 3.36: Interaction with the GUI andthe IDE 97
AproposCommand 3.3.1: Thehelpcommand 18, 4.8: Documentation 120
argument
listing for function 4.3.6: Miscellaneous 112
prefix 3.4: Using prefix arguments 21
attribute
description 3.3.1: Thehelp command 18
listing with apropos 3.3.1: Thehelpcommand 18
AutoFill Linefeed 3.19.2: Auto-Fill mode 57
AutoFill Mode 3.19.2: Auto-Fill mode 57, 3.26.2: Minor modes 77
auto-fill mode 3.19.2: Auto-Fill mode 57
Auto Fill Return 3.19.2: Auto-Fill mode 58
Auto Fill Space 3.19.2: Auto-Fill mode 57
auto-fill-space-indent editorvarigble 3.19.2: Auto-Fill mode 58
aut o- save- checkpoi nt - frequency editor variable 3.5.4: Auto-saving files 28
aut o- save- cl eanup- checkpoi nts editor variable 3.5.4: Auto-savingfiles 28
auto-savefile 3.5.4: Auto-saving files 27
aut o-save-fil ename-pattern editorvariable 3.54: Auto-savingfiles 27

aut o- save- key-count -t hreshol d editor variable 3.5.4: Auto-savingfiles 27

174

Index

Auto Save Toggle 3.5.4: Auto-saving files 27

B
Backspace DeletePreviousCharacter — 3.11.1: Deleting Text 46
Backspace EchoAreaDeletePreviousCharacter 3.29.4: Deleting and inserting text in theecho area 85
Back to Indentation 3.18: Indentation 55
Backup File 35.2: Savingfiles 24
backup-fil ename-pattern editorvariable 3.5.5: Backing-up filesonsaving 28
backup-fil ename-suffi x editorvariable 3.5.5: Backing-up filesonsaving 28
backup files 3.5.2: Savingfiles 24, 35.5: Backing-upfilesonsaving 28
backups-want ed editor variable 3.5.5: Backing-up filesonsaving 28
Backward Character ~ 3.8: Movement 38
Backward Form 4.4.1: Movement, marking and indentation 114
Backward Kill Form 4.4.2: Killingforms 115
Backward Kill Line 3.11.2: Killingtext 48
Backward Kill Sentence 3.11.2: Killingtext 48
Backward List 4.5.1: Movement 116
Backward Paragraph 3.8: Movement 39
Backward Search 3.23.1: Searching 68
Backward Sentence 3.8: Movement 39
Backward Up List 4.5.1: Movement 117
Backward Word ~ 3.8: Movement 38
base-char type 35.3.2: Unwritablecharacters 26
Beginning of Buffer ~ 3.8: Movement 40
Beginning of Buffer Preserving Point 3.8: Movement 41
Beginning of Defun 4.3.1: Movement, marking and specifying indentation 104
Beginning of Line 3.8: Movement 38
Beginning of Line After Prompt ~ 3.33.1: Listener commands 88
Beginning Of Parse 3.29.3: Movement intheecho area 84
Beginning of Parseor Line 3.29.3: Movement intheecho area 85
Beginning of Window 3.8: Movement 41
binding
editor definition 2.5.2: Two ways to execute commands 12
binding keys 3.32: Keybindings 87
Bind Key 3.32: Keybindings 87
bi nd- key function 6.1: Customizing default key bindings 138
Bind StringtoKey 3.32: Keybindings 88
bi nd-string-to-key function 6.1: Customizingdefault key bindings 139
Bottom of Window 3.8: Movement 40
Break Definition 4.3.3: Tracing functions 110
Break Definition on Exit 4.3.3: Tracing functions 110

175

Index

Break Function 4.3.3: Tracing functions 109
Break Function on Exit 4.3.3: Tracing functions 109
breaking processes 3.1: Aborting commands and processes 16
break-on-editor-error editorvariable 3.37: Miscellaneous 99
buffer

changed definitionsin ~ 4.3.6: Miscellaneous 112

circulate 3.20: Buffers 58

commands 3.20: Buffers 58

compile 4.9.4: Compilation commands 126

compile changed definitions 4.9.4: Compilation commands 127

compileif necessary 4.9.4: Compilation commands 126

creste 3.20: Buffers 59

editor definition 2.1.2: Filesand buffers 9

evaluate 4.9.2: Evaluation commands 123

evaluate changed definitions 4.9.2: Evaluation commands 124

fileoptions 3.5.6: Miscellaneousfile operations 29

functions 6.3.3: Buffers 142, 6.3.16: Windows 158

insert 3.20: Buffers 60

kil 3.5.6: Miscellaneousfile operations 30, 3.20: Buffers 59, 3.20: Buffers 59

liss 3.20: Buffers 59

mark whole 3.9.1: Marks 44

modified check 3.20: Buffers 60

moveto beginning 3.8: Movement 40

movetoend 3.8: Movement 41

new 3.20: Buffers 60

not modified 3.20: Buffers 60

reedonly 3.20: Buffers 60

rename 3.20: Buffers 60

revert 3.5.6: Miscellaneousfile operations 29

revert with external format ~ 3.5.6: Miscellaneous file operations 29

save 352: Savingfiles 23

search all 3.23.1: Searching 68

select 3.20: Buffers 58

select in other window ~ 3.20: Buffers 58

select previous 3.20: Buffers 58

set package 4.9.1: General Commands 122
buffer type 6.3.3: Buffers 142
Buffer Changed Definitions 4.3.6: Miscellaneous 112
buffer-from nanme function 6.3.3.2: Buffer operations 145
pbuffer-list vaiable 6.3.3.2: Buffer operations 144

buf f er-nane function 6.3.3.2: Buffer operations 145

176

Index

Buffer Not Modified ~ 3.20: Buffers 60
buf f er - pat hname function 6.3.8: Files 152
buf f er- poi nt function 6.3.3.2: Buffer operations 145
buffersand windows 3.35.1: Buffersand windows 95
buffers-end function 6.3.3.2: Buffer operations 145
BuffersQuery Replace 3.23.3: Replacement 72
BuffersSearch 3.23.1: Searching 69
buffers-start function 6.3.3.2: Buffer operations 145
buf f er-val ue function 6.3.15: Editor variables 158
bug
reporting: in documentation 3.36: Interaction with the GUI and the IDE 99
reporting: in software 3.36: Interaction with the GUI and the IDE 99
Bug Report 3.36: Interaction with the GUI and the IDE 99
Build Application ~ 3.36: Interaction with the GUI and the IDE 97
Build Interface 3.36: Interaction with the GUI and the IDE 97
Bury Buffer ~ 3.20: Buffers 59
button

mouse bindingsin editor 3.35.2: Actionsinvolving themouse 96

C
calling editor functions 6.3.1: Calling editor functions 140
Capitalize Region 3.15: Caseconversion 52
CapitalizeWord 3.15: Caseconversion 52
case conversioncommands 3.15: Caseconversion 51
case-repl ace editorvariadble 3.23.3: Replacement 72
CD 3.34.2: Invoking and using a Shell tool 94
Center Line 3.19.1: Fill commands 57
change- buf fer-1ock-for-nodification function 6.3.3.1: Buffer locking
character
backward 3.8: Movement 38
deleteexpandingtabs 3.11.1: Deleting Text 46
deletenext 3.11.1: Deleting Text 46
deleteprevious 3.11.1: Deleting Text 46
forward 3.8: Movement 38
insert with overwrite 3.17: Overwriting 53
overwriteprevious 3.17: Overwriting 54
transposition 3.16: Transposition 52
character type 3.20: Buffers 60
character-offset function 6.3.12: Movement 154
Check Buffer Modified 3.20: Buffers 60

check-di sk-versi on-consi stent function 6.3.8: Files 152

177

144

Index

Circulate Buffers 3.20: Buffers 58
class
describe 4.3.6: Miscellaneous 113
ClassBrowser tool 4.3.6: Miscellaneous 113
cl ear-echo-area function 6.3.6: Theechoarea 150
Clear Eval Record 3.38: Obscure commands 100
Clear Listener 3.11.1: Deleting Text 47
Clear Output 3.11.1: Deleting Text 47
Clear Undo 3.38: Obscurecommands 100
cl ear-undo function 6.3.3.2: Buffer operations 146
Code Coverage Current Buffer ~ 4.10.1: Coloring code coverage 128
Code CoverageFile 4.10.1: Coloring code coverage 129
Code Coverage Load Default Data 4.10.2: Setting the default code coverage data 129
Code Coverage Set Default Data 4.10.2: Setting the default code coverage data 129
colors
Font Lock 4.2: Syntaxcoloring 102
Lispsyntax ~ 4.2: Syntaxcoloring 102
command
abort 3.1: Aborting commands and processes 16
completion 2.5.2: Two waysto execute commands 12, 3.2: Executingcommands 17, 3.29.1: Completing commands 83
description 3.3.1: Thehelpcommand 18, 3.3.1: Thehelpcommand 18
execution 2.5: Executingcommands 11, 3.2: Executingcommands 17, 6.3.1: Calling editor functions 140
history 3.3.1: Thehelpcommand 19
key sequencefor 3.3.1: Thehelpcommand 19
key sequences 3.3.1: Thehelp command 20
listing with apropos 3.3.1: The helpcommand 18
repetition 2.5.3: Prefixarguments 12, 3.4: Using prefix arguments 21
shell 3.34: Running shell commands 93
commands
abbreviation 3.27: Abbreviations 78
aborting commands 2.6.1: Aborting commands and processes 13, 3.1: Aborting commands and processes 16
aborting processes 2.6.1: Aborting commands and processes 13, 3.1: Aborting commands and processes 16
buffer ~ 3.20: Buffers 58
caseconversion 3.15: Caseconversion 51
compilation 4.9: Evaluation and compilation 121, 4.9.4: Compilation commands 126
cutand paste 2.6.7: Killingand Yanking 14
deletingtext 2.6.5: Deletingand killingtext 14, 3.11: Deleting and killingtext 46
Directory mode 3.7: Directory mode 31
echoarea 3.29: Echo area operations 83
editing Lisp programs 4 : Editing Lisp Programs 102
editor variable 3.30: Editor variables 86

evaluation 4.9: Evaluation and compilation 121, 4.9.2: Evaluation commands 122, 4.9.3: Evaluationin Listener commands 124

178

Index

filehandling 2.6.2: Filehandling 13, 3.5: Filehandling 21
filling 3.19: Filling 56
help 26.8: Help 14, 33: Help 17
indentation ~ 3.18: Indentation 54
insertingtext 2.6.3: Insertingtext 13, 3.12: Insertingtext 49
key binding 3.32: Keybindings 87
keyboard macro 3.28: Keyboard macros 82
killingtext ~ 2.6.5: Deletingand killingtext 14, 3.11: Deletingand killingtext 46
Lispcomment 4.6: Comments 117
Lisp documentation 4.8: Documentation 120
Lispform 4.4: Forms 114
Lisp function and definition ~ 4.3: Functions and definitions 104
Lisplist 45: Lists 116
movement 2.6.4: Movement 13, 3.8: Movement 37
overwriting 3.17: Overwriting 53
pages 3.22: Pages 63
parentheses 4.7 : Parentheses 119, 4.7: Parentheses 120
recursiveediting 3.31: Recursiveediting 87
register 3.25: Registers 74
replacing 3.23: Searching and replacing 65
running shell from editor ~ 3.34: Running shell commands 93
searching 3.23: Searching and replacing 65
transposition 3.16: Transposition 52
undoing 2.6.6: Undoing 14, 3.14: Undoing 51
window 3.21: Windows 61
comment
create 4.6: Comments 117
kil 4.6: Comments 118
moveto 4.6: Comments 117
comrent - begi n editor variable 4.6: Comments 119
commrent - col unm editor variable 4.6: Comments 119
comment commands 4.6: Comments 117
coment - end editor variable 4.6: Comments 119
Comment Region 4.6: Comments 117
comments
inserting 4.6: Comments 118
comment -start editorvariable 4.6: Comments 119
CompareBuffers 3.24: Comparison 74
CompareFile And Buffer ~ 3.24: Comparison 74
conpar e-i gnor es-whi t espace editor variable 3.24: Comparison 74

CompareWindows 3.24: Comparison 73

179

Index

compilation commands 4.9: Evaluation and compilation 121, 4.9.4: Compilation commands 126
compilation messages

finding the sourcecode 4.9.4: Compilation commands 128
compile

buffer 4.9.4: Compilation commands 126

buffer changed definitions 4.9.4: Compilation commands 127

buffer if necessary 4.9.4: Compilation commands 126

changed definitions 4.9.4: Compilation commands 127

file 4.9.4: Compilation commands 126

form 4.9.4: Compilation commands 126

region 4.9.4: Compilation commands 126

system 4.9.4: Compilation commands 127

system changed definitions 4.9.4: Compilation commands 128
Compileand Load Buffer File 4.9.4: Compilation commands 127
Compileand Load File 4.9.4: Compilation commands 127
CompileBuffer ~ 4.9.4: Compilation commands 126
Compile Buffer Changed Definitions 4.9.4: Compilation commands 127
Compile Buffer File 4.9.4: Compilation commands 126
conpi l e-buffer-file-confirm editorvariable 4.9.4: Compilation commands 127
Compile Changed Definitions 4.9.4: Compilation commands 127
CompileDefun 4.9.4: Compilation commands 126
CompileFile 4.9.4: Compilation commands 126
CompileRegion 4.9.4: Compilation commands 126
CompileSystem 4.9.4: Compilation commands 127
Compile System Changed Definitions 4.9.4: Compilation commands 128
CompleteField 3.29.1: Completing commands 83
conmpl ete-in-place function 6.3.14: In-placecompletion 156
Completelnput 3.29.1: Completing commands 83
Complete Symbol ~ 4.3.5: Indentation and Completion 112
conpl et e-wi t h-non-focus 6.3.14: In-place completion 156
completion

dynamicword 3.12: Insertingtext 50

in-place 6.3.14: In-place completion 156

of abbreviated symbols 4.3.5: Indentation and Completion 112

of commands 2.5.2: Two waysto executecommands 12, 3.2: Executingcommands 17, 3.29.1: Completing commands 83

of filenames 3.6: Filenamecompletion 31

of symbols 4.3.5: Indentation and Completion 111, 4.3.5: Indentation and Completion 111, 4.3.5: Indentation and Completion 112
configuration files 5.2: Keybhindings 135, 6: Advanced Features 138
Confirm Parse 3.29.1: Completing commands 83
Connect Remote Debugging 4.15: Remotedebugging 132
Continue TagsSearch 4.3.2: Définition searching 107

180

Index

Control key

2.5.1: Modifier keys -

control keys

insert into buffer

copy- poi nt function 6.34:

Copy To Cut Buffer
Copy to Register

Count LinesPage 3.22: Pages

Count Lines Region
Count Matches
Count Occurrences

Count Words Region
Create Buffer
Create Tags Buffer

cross-referencing

Crl+]
Crl+
Crl+A
crl+A
Crl+A
Crl +B
Crl+B

Ct r | +Br eak, break gesture

crl+C
crl +C
Crl +C
ctrl+C
crl+C
Crl+C
crl +C
ctrl+C
crl+C
Crl+C
crl +C
Ctrl +C
crl+C
Crl+D
Crl +E
Crl+F

Abort Recursive Edit

Command, Ctrl, Alt and Meta 11

3.12: Insertingtext 50

Points 148

3.35.1: Buffersand windows 95
3.25: Registers 75

64

3.9.2: Regions 45
3.23.2: Regular expression searching 71
3.23.2: Regular expression searching 71
3.9.2: Regions 44
3.20: Buffers 59

4.3.2: Définition searching 107
4.3.4: Function callersand callees 110

3.31: Recursiveediting 87

Function Arglist Displayer ~ 4.3.6: Miscellaneous 113

Beginning of Line 3.8

. Movement 38

Beginning of Line After Prompt 3.33.1: Listener commands 88

Beginning Of Parseor Li

Backward Char acter

ne 3.29.3: Movementintheechoarea 85

3.8: Movement 38

Echo Area Backward Char acter 3.29.3: Movementintheechoarea 84

3.1: Aborting commands and processes 16

< History First ~ 3.33.2: History commands 89

> History Last 3.33.2: History commands 90

Ctrl +C Insert Selected Text 3.29.4: Deleting and inserting text in the echo area 85

Ctrl +C Interrupt Shell Subjob 3.34.2: Invoking and using a Shell tool 94

Ctrl +D Shell Send Eof 3.34.2: Invoking and using a Shell tool 95

Ctrl +F History Select
Ctrl +l Inspect Star

3.33.2: History commands 91

3.33.1: Listener commands 89

Ctrl +K History Kill Current 3.33.2: History commands 90

Ctrl +N History Next

3.33.2: History commands 90

Ctrl +P History Previous 3.33.2: History commands 90

Ctrl +R History Search 3.33.2: History commands 90

Ctrl +Y History Yank

3.33.2: History commands 91

Ctrl +Z Stop Shell Subjob 3.34.2: Invoking and using a Shell tool 95

Delete Next Character

3.11.1: Deleting Text 46

Endof Line 3.8: Movement 38

Forward Char acter 3.

Ctr | +G, abort current command

8: Movement 38

3.1: Aborting commands and processes 16

181

Index

Crl+H A Apropos 26.8: Help 14, 4.8: Documentation 120

Ctrl +H B DescribeBindings 3.3.1: Thehelp command 20

Crl+H C What Command 3.3.1: Thehelp command 18

Crl+H Crl +D Document Command 3.3.1: Thehelpcommand 18
Ctrl+H Crl +K Document Key 3.3.1: Thehelpcommand 19

Crl+H Crl +V Document Variable 3.3.1: Thehelpcommand 19

Ctrl +H D DescribeCommand 2.6.8: Help 14, 3.3.1: Thehelpcommand 18
Crl+H G GenericDescribe 3.3.1: Thehelpcommand 18

Ctrl +HHelp 3.3.1: Thehelpcommand 17

Crl+H K DescribeKey 26.8: Help 14, 3.3.1: Thehelpcommand 19
Ctrl+H L WhatLossage 3.3.1: Thehelpcommand 19

Ctrl +H V Describe Editor Variable 3.3.1: Thehelpcommand 19
Crl+H W Wherels 33.1: Thehelpcommand 19

Ctrl +J Insert From PreviousPrompt 3.33.1: Listener commands 89
Crl +K KillLine 3.11.2: Killingtext 48

Ctrl +L Refresh Screen 3.21: Windows 63

Ctrl+N NextLine 3.8: Movement 38

Ctrl +Next Endof Window 3.8: Movement 41

Ctrl +O OpenLine 3.12: Insertingtext 50

Ctrl +P Insert Parse Default 3.29.4: Deleting and inserting text in the echo area 85
Ctrl +P PreviousLine 3.8: Movement 38

Ctrl +Pri or Beginningof Window 3.8: Movement 41

Ctrl +Q Quoted Insert 3.12: Insertingtext 50

Ctrl +R Return Default 3.29.4: Deleting and inserting text in theecho area 85
Ctrl +R Reverselncremental Search 3.23.1: Searching 67

Ctrl +S Esc Forward Search 3.23.1: Searching 67

Ctrl +S Incremental Search 3.23.1: Searching 65

Ctrl+Shift+_ Undo 26.6: Undoing 14, 3.14: Undoing 51

Ctrl +Shi ft +A Function Argument List 4.3.6: Miscellaneous 113

Ctrl +Shi ft +B CompileBuffer ~ 4.9.4: Compilation commands 126

Ctrl +Shi ft +C CompileDefun 4.9.4: Compilation commands 126

Ctrl +Shi f t +D Function Documentation ~ 4.8: Documentation 121

Ctrl +Shi ft +E EvaluateRegion 4.9.2: Evaluation commands 123

Ctrl +Shi ft +M Macroexpand Form 4.4.3: Macro-expansion of forms 115
Ctrl +Shi ft +R CompileRegion 4.9.4: Compilation commands 126
Ctrl +Space SetMark 3.9.1: Marks 43

Ctrl +T Transpose Characters 3.16: Transposition 52

Ctrl +U Kill Parse 3.29.4: Deleting and inserting text intheecho area 85

182

Index

Ctrl +U Set Prefix Argument 3.4: Using prefix arguments 21

Ctrl +V Scroll Window Down 3.8: Movement 39

Ctrl +WKill Region 3.11.2: Killingtext 48

Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X

Crl+X .

Crl +X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl +X
Crl+X
Crl+X
Crl+X
Crl +X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X
Crl+X

& Search FilesMatching Patterns 3.23.1: Searching 69

(DefineKeyboard Macro 3.28: Keyboard macros 82

) End Keyboard Macro 3.28: Keyboard macros 82

* Search Files 3.23.1: Searching 69

+ Add Global Word Abbrev 3.27: Abbreviations 79

- Inverse Add Global Word Abbrev 3.27: Abbreviations 79

N B O T

Set Fill Prefix ~ 3.19.1: Fill commands 57
Point to Register 3.25: Registers 75
DeleteWindow 3.21: Windows 61
Delete Other Windows ~ 3.21: Windows 62
New Window 3.21: Wndows 61

i Set Comment Column 4.6: Comments 117

What Cursor Position 3.29.5: Display of information in the echo area

[PreviousPage 3.22: Pages 63
]

Next Page 3.22: Pages 64

B Select Buffer 3.20: Buffers 58

C GoBack 3.10: Locations 45

Crl+A
Crl+B
Crl+C
Crl+E
Crl+F
Crl+H
Cirl+l
Crl+L
Crl+0O
Crl+P
Crl+Q
Crl+S
Crl +T
Crl+U
Crl+Vv

Add ModeWord Abbrev 3.27: Abbreviations 79
List Buffers 3.20: Buffers 59

Save All Filesand Exit 3.5.2: Saving files 24
EvaluateLast Form 4.9.2: Evaluation commands 123
Wfind File 35.1: Findingfiles 22

Inverse Add ModeWord Abbrev 3.27: Abbreviations 79
Indent Rigidly ~ 3.18: Indentation 55

Lowercase Region 3.15: Caseconversion 52
DeleteBlank Lines 3.11.1: Deleting Text 47

Mark Page 3.22: Pages 64

Toggle Buffer Read-Only ~ 3.20: Buffers 60
SaveFile 35.2: Savingfiles 23

TransposeLines 3.16: Transposition 53

Uppercase Region 3.15: Caseconversion 52

Find AlternateFile 3.5.1: Findingfiles 22

Ctrl +W WriteFile 35.2: Savingfiles 23

Ctrl+X
Del et e

Exchange Point and Mark 3.9.1: Marks 44
Backward Kill Sentence 3.11.2: Killingtext 48

183

86

Index

Ctrl +X E Last Keyboard Macro 3.28: Keyboard macros 82
Ctrl+X F SetFill Column 3.19.1: Fill commands 56

Crl +X G Insert Register 3.25: Registers 76

Ctrl +X H Mark WholeBuffer ~ 3.9.1: Marks 44

Crl+X | InsertFile 35.6: Miscellaneousfile operations 29
Crl+X J JumptoRegister 3.25: Registers 75

Crl+X K Kill Buffer ~ 3.20: Buffers 59

Crl+X L CountLinesPage 3.22: Pages 64

Ctrl +X M Select GoBack 3.10: Locations 45

Ctrl +X O Next Ordinary Window 3.21: Windows 61
Crl+X P GoForward 3.10: Locations 45

Crl+X Q Keyboard MacroQuery 3.28: Keyboard macros 82
Crl+X S SaveAll Files 352: Savingfiles 23

Crl+X Tab Indent Rigidly 3.18: Indentation 55

Crl+X X CopytoRegister 3.25: Registers 75

Ctrl +X ~ Check Buffer Modified ~ 3.20: Buffers 60
Ctrl+Y UnKill 26.7: Killingand Yanking 14, 3.12: Insertingtext 49
Ctrlkey 25.1: Modifier keys- Command, Ctrl, Alt and Meta 11
current-buffer function 6.3.3.2: Buffer operations 144
current-mark function 6.3.4: Points 147
current - package editorvariable 4.9.1: General Commands 121

current point

editor definition 2.2.1: Points 10
current-point function 6.34: Points 147
current-w ndow function 6.3.16: Wndows 158
customising

editor 6: Advanced Features 138

editor commands 6: Advanced Features 138

indentation of Lispforms 6: Advanced Features 138, 6.2: Customizing Lisp indentation 139

key bindings 5.2: Keybindings 135, 6: Advanced Features 138, 6.1: Customizing default key bindings 138
customizing

editor 6: Advanced Features 138

editor commands 6: Advanced Features 138

indentation of Lispforms 6: Advanced Features 138, 6.2: Customizing Lisp indentation 139

key bindings 5.2: Keybindings 135, 6: Advanced Features 138, 6.1: Customizing default key bindings 138
cut and paste commands 2.6.7: Killing and Yanking 14

D
debugger

usingineditor 4.9.2: Evaluation commands 124

184

Index

Debugger Abort 3.33.3: Debugger commands 91
Debugger Backtrace 3.33.3: Debugger commands 91
debugger commands
Debugger Abort Al t +A 3.33.3: Debugger commands 91
Debugger Backtrace Al t +B 3.33.3: Debugger commands 91
Debugger Continue Al t +C 3.33.3: Debugger commands 91
Debugger Edit Al t +E 3.33.3: Debugger commands 92
Debugger Next Al t +N 3.33.3: Debugger commands 92
Debugger PreviousAl t +P 3.33.3: Debugger commands 92
Debugger Print Al t +V 3.33.3: Debugger commands 92
Debugger Top 3.33.3: Debugger commands 92
Throw out of Debugger ~ 3.33.3: Debugger commands 92
Debugger Continue 3.33.3: Debugger commands 91
Debugger Edit 3.33.3: Debugger commands 92
Debugger Next 3.33.3: Debugger commands 92
Debugger Previous 3.33.3: Debugger commands 92
Debugger Print 3.33.3: Debugger commands 92
Debugger Top 3.33.3: Debugger commands 92
debugging
remote 4.15: Remotedebugging 132
default
binding 2.5.2: Two waysto execute commands 12
external format forinput 3.5.3.1: Controlling the external format 25
external format for output ~ 3.5.3.1: Controlling the external format 26
prefix asgument 3.4: Using prefix arguments 21
def aul t - aut o- save-on editor variable 3.5.4: Auto-saving files 27
defaul t-buffer-el ement-type editorvarigble 3.20: Buffers 60
def aul t - nodes editor variable 3.26.3: Default modes 77
def aul t-search-ki nd editor variable 3.23.1: Searching 70
def command macro 6.3.2: Defining commands 141
Defindent 4.3.1: Movement, marking and specifying indentation 104
Define Command Synonym 6.3.2: Defining commands 142
defi ne-edi t or- node-vari abl e function 6.3.15: Editor variables 157
define-editor-variable function 6.3.15: Editor variables 157
Define Keyboard Macro 3.28: Keyboard macros 82
DefineWord Abbrevs 3.27: Abbreviations 81
definition
bresk 4.3.3: Tracing functions 110
break onexit 4.3.3: Tracing functions 110
disassemble 4.9.4: Compilation commands 128
editing 4.3: Functionsand definitions 104
find 4.3.2: Definition searching 105

185

Index

find buffer changes 4.3.6: Miscellaneous 112

searching for ~ 4.3.2: Definition searching 104

trace 4.3.3: Tracing functions 109

traceinside 4.3.3: Tracing functions 109

untrace 4.3.3: Tracing functions 109
definition folding 4.14: Définition folding 131
def node function 3.26.4: Definingmodes 77
Delete All Word Abbrevs ~ 3.27: Abbreviations 80
DeleteBlank Lines 3.11.1: Deleting Text 47
DeleteFile 3.5.6: Miscellaneousfile operations 30
Delete Fileand Kill Buffer ~ 3.5.6: Miscellaneousfile operations 30
Delete Global Word Abbrev 3.27: Abbreviations 80
DeleteHorizontal Space 3.11.1: Deleting Text 46
Delete Indentation ~ 3.18: Indentation 55
DeleteKey Binding 3.32: Keybindings 88
Delete Matching Lines 3.23.1: Searching 68
Delete Mode Word Abbrev 3.27: Abbreviations 80
Delete Next Character ~ 3.11.1: Deleting Text 46
Delete Next Window ~ 3.21: Windows 62
Delete Non-Matching Lines 3.23.1: Searching 68
Delete Other Windows ~ 3.21: Windows 62
del et e- poi nt function 6.3.4: Points 148
Delete PreviousCharacter ~ 3.11.1: Deleting Text 46
Delete Previous Character Expanding Tabs 3.11.1: Deleting Text 46
Delete Region 3.11.1: Deleting Text 47
Delete Selection Mode 3.13: Delete Selection 51
DeleteWindow 3.21: Windows 61
deletingtext 3.11.1: Deleting Text 46
deleting text commands 2.6.5: Deletingand killingtext 14, 3.11: Deleting and killing text
deletion

editor definition 3.11: Deleting and killing text 46

of selection 3.13: Delete Selection 51

of surrounding form 4.4.2: Killing forms 115
delimiter

sentence 2.4.2: Sentences 11
DescribeBindings 3.3.1: Thehelpcommand 20
DescribeClass 4.3.6: Miscellaneous 113
DescribeCommand 3.3.1: Thehelpcommand 18
Describe Editor Variable 3.3.1: Thehelp command 19
Describe Generic Function ~ 4.3.6: Miscellaneous 113

DescribeKey 3.3.1: Thehelpcommand 19

186

46

Index

Describe Method Call ~ 4.3.6: Miscellaneous 114
Describe Symbol 4.8 Documentation 121
Describe System 4.3.6: Miscellaneous 114
Diff 3.24: Comparison 74
Diff Ignoring Whitespace 3.24: Comparison 74
directory
change 3.34.2: Invoking and using a Shell tool 94
query replace 3.23.3: Replacement 72
search 3.23.1: Searching 69
Directory mode 3.26.1: Major modes 76
Directory mode commands 3.7 : Directory mode 31
Directory Mode Copy Marked 3.7.4: Modifying the file system from the Directory mode buffer 36
Directory Mode Delete 3.7.4: Modifying the file system from the Directory mode buffer 35
Directory Mode Edit File 3.7.2: Directory mode commands 33
Directory Mode Edit FileIn Other Window 3.7.2: Directory mode commands 33
Directory Mode Flag Delete 3.7.2: Directory mode commands 35
Directory Mode Flag Delete When Marked ~ 3.7.2: Directory mode commands 35
Directory Mode Flag Edited 3.7.2: Directory mode commands 34
Directory ModeKill Line 3.7.3: Explicit editing of the Directory mode buffer 35
Directory ModeMark 3.7.2: Directory mode commands 33
Directory ModeMark All ~ 3.7.2: Directory mode commands 34
Directory Mode Mark Matches 3.7.2: Directory mode commands 34
Directory Mode Mark Regexp Matches 3.7.2: Directory mode commands 34
Directory Mode Mark When Edited 3.7.2: Directory mode commands 34
Directory ModeMove Marked 3.7.4: Modifying the file system from the Directory mode buffer 36
Directory Mode New Buffer With Edited 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Flagged Delete 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Marked ~ 3.7.5: Creating new Directory mode buffers 36
Directory Mode New Buffer With Matches 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Regexp Matches 3.7.5: Creating new Directory mode buffers 37
Directory Mode Next Line 3.7.2: Directory mode commands 32
Directory Mode PreviousLine 3.7.2: Directory mode commands 32
Directory Mode Rename 3.7.4: Maoadifying the file system from the Directory mode buffer 36
Directory Mode Toggle Edited 3.7.2: Directory mode commands 34
Directory Mode Unflag Edited 3.7.2: Directory mode commands 33
Directory ModeUnmark 3.7.2: Directory mode commands 33
Directory Mode Unmark Backward 3.7.2: Directory mode commands 33
Directory Mode Unmark Matches 3.7.2: Directory mode commands 34
Directory Mode Unmark When Edited 3.7.2: Directory mode commands 34
Directory Query Replace 3.23.3: Replacement 72
Directory Search 3.23.1: Searching 69

Disassemble Definition 4.9.4: Compilation commands 128

187

Index

documentation commands ~ 4.8: Documentation 120
Document Command 3.3.1: Thehelpcommand 18
Document Key 3.3.1: Thehelp command 19
Document Variable 3.3.1: Thehelpcommand 19
DoNothing 3.32: Keyhindings 88
double-quotes

inserting 4.4.4: Miscellaneous 116
Down Comment Line 4.6: Comments 118
DownList 4.5.1: Movement 117
dspec

documentation 4.8: Documentation 121

Dynamic Completion 3.12: Insertingtext 50

E

echo area
completetext 3.29.1: Completing commands 83
completing commandsin 3.29.1: Completing commands 83
deletingand insertingtextin ~ 3.29.4: Deleting and inserting text intheecho area 85
editor definition 3.29: Echo area operations 83
helponparse 3.29.1: Completing commands 83
match input from history 3.29.2: Repeating echo area commands 84
movementin 3.29.3: Movementintheechoarea 84
next command 3.29.2: Repeating echo area commands 84
previouscommand 3.29.2: Repeating echo area commands 84
prompting theuser 6.3.13: Prompting theuser 155
repeating commandsin 3.29.2 : Repeating echo area commands 84
terminateentry 3.29.1: Completing commands 83
Echo Area Backward Character ~ 3.29.3: Movement intheecho area 84
Echo AreaBackward Word ~ 3.29.3: Movementintheechoarea 84
echo areacommands 3.29: Echo area operations 83
Echo Area Delete Previous Character 3.29.4: Deleting and inserting text intheecho area 85
echo areafunctions 6.3.6: Theechoarea 150, 6.3.18: Examples 160
Echo AreaKill PreviousWord 3.29.4: Deleting and inserting text intheecho area 85
Edit Buffer ~ 3.20: Buffers 59
Edit Callees 4.3.4: Function callersand callees 111
Edit Callers 4.3.4: Function callersand callees 111
Edit Compiler Warnings 3.36: Interaction with the GUI and the IDE 98
Edit Editor Command 4.3.2: Definition searching 106
editor
customising 6: Advanced Features 138
customizing 6: Advanced Features 138
del et e-regi on-comand 3.11.1: Deleting Text 47
programming 6.3: Programming the editor 140

188

Index

editor commands
Abbrev Expand Only ~ 3.27: Abbreviations 79
Abbreviated Complete Symbol Al t +I 4.3.5: Indentation and Completion 112
Abbrev Mode 3.27: Abbreviations 79
Abort Recursive Edit Ct r | +] 3.31: Recursiveediting 87
ActivateInterface 3.36: Interaction with the GUI and the IDE 96
Add Global Word Abbrev Ct r| +X + 3.27: Abbreviations 79
Add ModeWord Abbrev Ct r| +X Ctrl +A 3.27: Abbreviations 79
Append Next Kill Al t +Ct r | +W 3.11.2: Killingtext 48
AppendtoFile 35.2: Savingfiles 24
Append to Register ~ 3.25: Registers 75
Append to Word Abbrev File 3.27: Abbreviations 81
AproposCommand 3.3.1: Thehelpcommand 18
AproposCtrl +H A 4.8: Documentation 120

Auto Fill Linefeed Li nef eed 3.19.2: Auto-Fill mode 57
AutoFill Mode 3.19.2: Auto-Fill mode 57

Auto Fill Return Ret urn 3.19.2: Auto-Fill mode 58
Auto Fill SpaceSpace 3.19.2: Auto-Fill mode 57
Auto Save Toggle 3.5.4: Auto-saving files 27

Back to Indentation Al t +M 3.18: Indentation 55
Backup File 35.2: Savingfiles 24

Backward Character Ct r| +B 3.8 Movement 38

Backward Form Al t +Ctr| +B 4.4.1: Movement, marking and indentation 114
Backward Kill Form Al t +Ct r| +Del et e 4.4.2: Killingforms 115
Backward Kill Line 3.11.2: Killingtext 48

Backward Kill SentenceCt r1 +X Del ete 3.11.2: Killingtext 48

Backward List Al t +Ctr| +P 451: Movement 116

Backward Paragraph Al t + 3.8: Movement 39
Backward Search 3.23.1: Searching 68

Backward Sentence Al t +A 3.8: Movement 39
Backward UpLig Al t +Ctrl +U 451: Movement 117
Backward Word Al t +B 3.8: Movement 38

Beginning of Buffer Al t +< 3.8: Movement 40
Beginning of Buffer Preserving Point 3.8: Movement 41
Beginning of Defun Al t +Ct r | +A 4.3.1: Movement, marking and specifying indentation
Beginning of Line After Prompt Ct r | +A 3.33.1: Listener commands 88
Beginningof LineCtr|1 +A 3.8: Movement 38
Beginning Of Parse Al t +< 3.29.3: Movementintheechoarea 84
Beginning of Parseor LineCtrl +A 3.29.3: Movementintheechoarea 85
Beginning of Window Ct r | +Pri or 3.8: Movement 41
Bind Key 3.32: Keybindings 87
189

Index

Bind StringtoKey 3.32: Keyhbindings 88

Bottom of Window 3.8: Movement 40

Break Definition 4.3.3: Tracing functions 110

Break Definition on Exit 4.3.3: Tracing functions 110

Break Function 4.3.3: Tracing functions 109

Break Function on Exit 4.3.3: Tracing functions 109

Buffer Changed Definitions 4.3.6: Miscellaneous 112

Buffer Not Modified Al t +Shi ft +~ 3.20: Buffers 60
BuffersQuery Replace 3.23.3: Replacement 72

BuffersSearch 3.23.1: Searching 69

Bug Report 3.36: Interaction with the GUI and theIDE 99

Build Application ~ 3.36: Interaction with the GUI and the IDE 97
Build Interface 3.36: Interaction with the GUI and the IDE 97

Bury Buffer ~ 3.20: Buffers 59

Capitalize Region 3.15: Casecornversion 52

CapitalizeWord Al t +C 3.15: Caseconversion 52

CD 3.34.2: Invoking and using a Shell tool 94

Center Line 3.19.1: Fill commands 57

Check Buffer Modified Ct r | +X ~ 3.20: Buffers 60

Circulate BuffersAl t +Ct r | +Shi ft +L 3.20: Buffers 58

Clear Eval Record 3.38: Obscure commands 100

Clear Listener 3.11.1: Deleting Text 47

Clear Output 3.11.1: Deleting Text 47

Clear Undo 3.38: Obscurecommands 100

Code Coverage Current Buffer ~ 4.10.1: Coloring code coverage 128
Code CoverageFile 4.10.1: Coloring code coverage 129

Code CoverageLoad Default Data 4.10.2: Setting the default code coverage data 129
Code Coverage Set Default Data 4.10.2 : Setting the default code coverage data 129
Comment Region 4.6: Comments 117

CompareBuffers 3.24: Comparison 74

CompareFile And Buffer ~ 3.24: Comparison 74

CompareWindows 3.24: Comparison 73

Compileand Load Buffer File 4.9.4: Compilation commands 127
Compileand Load File 4.9.4: Compilation commands 127

Compile Buffer Changed Definitions 4.9.4: Compilation commands 127
CompileBufferCt r | +Shi ft +B 4.9.4: Compilation commands 126
Compile Buffer File 4.9.4: Compilation commands 126

Compile Changed Definitions 4.9.4: Compilation commands 127
CompileDefun Ct r | +Shi ft +C 4.9.4: Compilation commands 126
CompileFile 4.9.4: Compilation commands 126

CompileRegion Ctr | +Shi ft +R 4.9.4: Compilation commands 126
CompileSystem 4.9.4: Compilation commands 127

190

Index

Compile System Changed Definitions 4.9.4: Compilation commands 128

CompleteField Space 3.29.1: Completing commands 83
Completelnput Tab 3.29.1: Completing commands 83
Complete Symbol Al t +Ct r | +I 4.35: Indentation and Completion
Confirm ParseRet urn 3.29.1: Completing commands 83
Connect Remote Debugging 4.15: Remotedebugging 132
Continue Tags Search Al t +, 4.3.2: Définition searching 107
Copy To Cut Buffer ~ 3.35.1: Buffersand windows 95
CopytoRegister Ctrl +X X 3.25: Registers 75

Count LinesPageCtrl +X L 322: Pages 64

Count LinesRegion 3.9.2: Regions 45

Count Matches 3.23.2: Regular expression searching 71

Count Occurrences 3.23.2: Regular expression searching 71
Count WordsRegion 3.9.2: Regions 44

Create Buffer ~ 3.20: Buffers 59

Create TagsBuffer ~ 4.3.2: Definition searching 107

Debugger Abort Al t +A 3.33.3: Debugger commands 91
Debugger Backtrace Al t +B 3.33.3: Debugger commands 91
Debugger Continue Al t +C 3.33.3: Debugger commands 91
Debugger Edit Al t +E 3.33.3: Debugger commands 92
Debugger Next Al t +N 3.33.3: Debugger commands 92
Debugger PreviousAl t +P 3.33.3: Debugger commands 92
Debugger Print Al t +V 3.33.3: Debugger commands 92
Debugger Top 3.33.3: Debugger commands 92

Defindent 4.3.1: Movement, marking and specifying indentation 104
Define Command Synonym 6.3.2: Defining commands 142
Define Keyboard MacroCt r | +X (1 3.28: Keyboard macros 82
DefineWord Abbrevs 3.27: Abbreviations 81

Delete All Word Abbrevs 3.27: Abbreviations 80

DeleteBlank LinesCtr| +X Ctrl +O 3.11.1: DeletingText 47
DeleteFile 3.5.6: Miscellaneousfile operations 30
DedeteFileand Kill Buffer ~ 3.5.6: Miscellaneousfile operations 30
Delete Global Word Abbrev 3.27: Abbreviations 80

Delete Horizontal Space Al t +\ 3.11.1: Deleting Text 46
Delete Indentation Al t +Shi ft +* 3.18: Indentation 55
DeleteKey Binding 3.32: Keybindings 88

Delete MatchingLines 3.23.1: Searching 68

Delete Mode Word Abbrev 3.27: Abbreviations 80

Delete Next Character Ctr1 +D 3.11.1: Deleting Text 46
Delete Next Window ~ 3.21: Windows 62

Delete Non-Matching Lines 3.23.1: Searching 68

191

112

Index

Delete Other WindowsCt r1 +X 1 3.21: Windows 62

Delete Previous Character Backspace 3.11.1: Deleting Text 46

Delete Previous Character Expanding Tabs 3.11.1: Deleting Text 46

DeleteRegion 3.11.1: Deleting Text 47

Delete Selection Mode 3.13: Delete Sdlection 51

DeleteWindow Ctrl +X 0 3.21: Windows 61

DescribeBindingsCt rl +H B 3.3.1: Thehelpcommand 20

DescribeClass 4.3.6: Miscellaneous 113

DescribeCommand Ct rl +H D 3.3.1: Thehelpcommand 18

Describe Editor VariableCtrl +H V' 3.3.1: Thehelp command 19

Describe Generic Function ~ 4.3.6: Miscellaneous 113

DescribeKey Gt rl +H K 3.3.1: Thehelpcommand 19

Describe Method Call 4.3.6: Miscellaneous 114

Describe Symbol 4.8 : Documentation 121

Describe System 4.3.6: Miscellaneous 114

Diff 3.24: Comparison 74

Diff Ignoring Whitespace 3.24: Comparison 74

Directory Mode Copy Marked ~ 3.7.4: Modifying the file system from the Directory mode buffer 36
Directory Mode Delete 3.7.4: Modifying the file system from the Directory mode buffer 35
Directory Mode Edit File 3.7.2: Directory mode commands 33

Directory Mode Edit FileIn Other Window 3.7.2: Directory mode commands 33
Directory Mode Flag Delete 3.7.2: Directory mode commands 35

Directory Mode Flag Delete When Marked ~ 3.7.2: Directory mode commands 35
Directory Mode Flag Edited ~ 3.7.2: Directory mode commands 34

Directory ModeKill Line 3.7.3: Explicit editing of the Directory mode buffer 35

Directory ModeMark 3.7.2: Directory mode commands 33

Directory ModeMark All 3.7.2: Directory mode commands 34

Directory ModeMark Matches 3.7.2: Directory mode commands 34

Directory Mode Mark Regexp Matches 3.7.2: Directory mode commands 34

Directory Mode Mark When Edited 3.7.2: Directory mode commands 34

Directory ModeMove Marked 3.7.4: Modifying the file system from the Directory mode buffer 36
Directory Mode New Buffer With Edited 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Flagged Delete 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Marked 3.7.5: Creating new Directory mode buffers 36
Directory Mode New Buffer With Matches 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Regexp Matches 3.7.5: Creating new Directory mode buffers 37
Directory Mode Next Line ~ 3.7.2: Directory mode commands 32

Directory Mode PreviousLine 3.7.2: Directory mode commands 32

Directory Mode Rename 3.7.4: Modifying the file system from the Directory mode buffer 36
Directory Mode Toggle Edited 3.7.2: Directory mode commands 34

Directory Mode Unflag Edited 3.7.2: Directory mode commands 33

Directory ModeUnmark 3.7.2: Directory mode commands 33

192

Index

Directory Mode Unmark Backward 3.7.2: Directory mode commands 33
Directory Mode Unmark Matches 3.7.2: Directory mode commands 34
Directory Mode Unmark When Edited 3.7.2: Directory mode commands 34
Directory Query Replace 3.23.3: Replacement 72

Directory Search 3.23.1: Searching 69

Disassemble Definition 4.9.4: Compilation commands 128

Document Command Ctrl +H Ctrl +D 3.3.1: Thehelpcommand 18
DocumentKey Gt rl +H Ctrl +K 3.3.1: Thehelpcommand 19

Document VariableCt r| +H Ctrl +V 3.3.1: Thehelpcommand 19

Do Nothing 3.32: Keyhindings 88

Down Comment LineAl t +N 4.6: Comments 118

DownLig Alt+Ctrl +D 451: Movement 117

Dynamic Completion Al t +/ 3.12: Insertingtext 50

Echo AreaBackward Character Ctr| +B 3.29.3: Movementintheechoarea 84
Echo AreaBackward Word Al t +B 3.29.3: Movementintheecho area 84

Echo Area Delete Previous Character Backspace 3.29.4: Deleting and inserting text intheecho area 85
Echo AreaKill PreviousWord Al t +Backspace 3.29.4: Deleting and inserting text in theecho area 85
Edit Buffer ~ 3.20: Buffers 59

Edit Callees 4.3.4: Function callersand callees 111

Edit Callers 4.3.4: Function callersand callees 111

Edit Compiler Warnings 3.36: Interaction with the GUI and the IDE 98

Edit Editor Command 4.3.2: Definition searching 106

Edit Recognized Source 4.9.4: Compilation commands 128

Edit Word Abbrevs 3.27: Abbreviations 81

EmacsCommand 5.2.3: Accessing Emacskeys 136

End Keyboard MacroCt r| +X) 3.28: Keyboard macros 82

End of Buffer Al t +> 3.8: Movement 41

End of Buffer Preserving Point ~ 3.8: Movement 41

End of Defun Al t +Ct r| +E 4.3.1: Movement, marking and specifying indentation 104
Endof LineCtrl +E 3.8: Movement 38

End of Window Ct r | +Next 3.8: Movement 41

Evaluate Buffer ~ 4.9.2: Evaluation commands 123

Evaluate Buffer Changed Definitions 4.9.2: Evaluation commands 124
Evaluate Changed Definitions 4.9.2: Evaluation commands 124

EvaluateDefun Al t +Ct r | +X 4.9.2: Evaluation commands 122

Evaluate Defun In Listener 4.9.3: Evaluation in Listener commands 124
Evaluate Expression Escape+Escape 4.9.2: Evaluation commands 123
EvaluateLast ForomCt r| +X Ctrl +E 4.9.2: Evaluation commands 123
EvaluateLast Form In Listener ~ 4.9.3: Evaluation in Listener commands 125
Evaluate Nearest Form 4.9.2: Evaluation commands 123

Evaluate Nearest Form In Listener 4.9.3: Evaluationin Listener commands 125

193

Index

EvaluateNext Form 4.9.2: Evaluation commands 123

Evaluate Next Form In Listener ~ 4.9.3: Evaluation in Listener commands 125
Evaluate Region Ct r| +Shi ft +E 4.9.2: Evaluation commands 123
Evaluate Region In Listener 4.9.3: Evaluationin Listener commands 125
Evaluate System Changed Definitions 4.9.2: Evaluation commands 124
ExchangePointand Mark Ct r| +X Ctrl +X 3.9.1: Marks 44

Execute or Insert Newlineor Yank from PreviousPrompt Ret urn 3.33.1: Listener commands 89
Exit Lisp 3.36: Interaction with the GUI andthe IDE 99

Exit RecursiveEdit Al t +Ctr | +Z 3.31: Recursiveediting 87

Expand FileName Al t +Tab 3.6: Filename completion 31

Expand File Name With Space 3.6: Filename completion 31

Extended Command Al t +X 25.2: Twowaysto execute commands 12, 3.2: Executingcommands 17
Extract List 4.4.2: Killing forms 115

Fill Paragraph Al t +Q 3.19.1: Fill commands 56

Fill Region Al t +G 3.19.1: Fill commands 56

Find AlternateFileCt r| +X Ctrl +V 35.1: Findingfiles 22

Find Command Definition ~ 4.3.2: Definition searching 105

Find File 3.5.1: Findingfiles 22

Find File With External Format ~ 3.5.3.1: Controlling the external format 25
Find Key Definition ~ 4.3.2: Definition searching 106

Find Matching Parse Al t +K 3.29.2 : Repeating echo area commands 84
Find Mismatch 4.7 : Parentheses 120

Find Non-Base-Char ~ 3.5.3.2: Unwritable characters 27

Find Source Al t +. 4.3.2: Définition searching 105

Find Source For Current Package 4.3.2: Definition searching 106

Find Sourcefor Dspec 4.3.2: Definition searching 105

Find TagAl t +? 4.3.2: Definition searching 107

Find Unbalanced Parentheses 4.7: Parentheses 120

Find Unwritable Character ~ 3.5.3.2: Unwritable characters 26

Flush Sections ~ 3.38: Obscure commands 101

Fold Buffer Definitions 4.14: Definition folding 132

Font Lock Fontify Block 4.2: Syntax coloring 103

Font Lock Fontify Buffer ~ 4.2: Syntaxcoloring 103

Font Lock Mode 4.2: Syntax coloring 103

ForceUndo 3.7.3: Explicit editing of the Directory mode buffer 35

Forward Character Ctr| +F 3.8: Movement 38

Forward Form Al t +Ctr | +F 4.4.1: Movement, marking and indentation 114
Forward Kill Form Al t +Ctr | +K 4.4.2: Killingforms 115

Forward Kill Sentence Al t +K 3.11.2: Killingtext 48

Forward Liss Al t +Ctrl +N 451: Movement 116

Forward Paragraph Al t +] 3.8: Movement 39

194

Index

Forward SearchCt r | +S Esc 3.23.1: Searching 67

Forward Sentence Al t +E 3.8: Movement 39

Forward Up List 4.5.1: Movement 116

Forward Word Al t +F 3.8: Movement 38

Function Arglist Al t += 4.3.6: Miscellaneous 112

Function Arglist Displayer Ctr | +° 4.3.6: Miscellaneous 113
Function Argument List Ct r| +Shi ft +A 4.3.6: Miscellaneous 113
Function Documentation Ct r | +Shi ft +D 4.8: Documentation 121
Fundamental Mode 3.26.1: Major modes 76

GenericDescribeCtrl +H G 3.3.1: Thehelp command 18

Get Register 3.25: Registers 76

Global Font Lock Mode 4.2: Syntaxcoloring 103

GoBack Ctrl +X C 3.10: Locations 45

GoForwardCtrl +X P 3.10: Locations 45

GotoLine 3.8: Movement 39

GotoPage 3.22: Pages 64

GotoPoint 3.8: Movement 41

Grep 3.36: Interaction with the GUI and the IDE 98

HepCirl +H 33.1: Thehepcommand 17

HelponParse? 3.29.1: Completing commands 83

History Firg Ctrl1 +C < 3.33.2: History commands 89

History Kill Current Ct r 1 +C Ctr| +K 3.33.2: History commands 90
History Last Ctrl1 +C > 3.33.2: History commands 90

History Next Al t +Nor Ctrl +C Ctrl +N 3.33.2: History commands 90
History PreviousAl t +PorCtr| +C Ctrl +P 3.33.2: History commands 90

History Search Al t +Ror Ctr1 +C Ctrl +R 3.33.2: History commands 90
History Search From Input ~ 3.33.2: History commands 90

History Select Ct r 1 +C Ctrl +F 3.33.2: History commands 91

History Yank Ct r | +C Ctrl +Y 3.33.2: History commands 91

lllegal 3.32: Keybhindings 88

Incremental Search Ct r | +S 3.23.1: Searching 65

Indent for Comment Al t +; 4.6: Comments 117

Indent Form Al t +Ctr1 +Q 4.4.1: Movement, marking and indentation 114

Indent New Comment Line Al t +J or Al t +Newl i ne 4.6: Comments 118
Indent New Line 3.18: Indentation 55

Indent or Complete Symbol 4.3.5: Indentation and Completion 111

Indent Region Al t +Ctr1 +\ 3.18: Indentation 54

Indent Rigidly Ct r | +X Tab, Crl+X Crl +l 3.18: Indentation 55

Indent Selection 3.18: Indentation 55

Indent Selection or Complete Symbol Tab 4.3.5: Indentation and Completion 111

195

Index

Indent Tab 3.18: Indentation 54

Insert () 4.7: Parentheses 119

Insert Buffer ~ 3.20: Buffers 60

Insert Cut Buffer ~ 3.35.1: Buffersand windows 96

Insert Double Quotes For Selection Al t +" 4.4.4: Miscellaneous 116

Insert FileCtrl +X | 3.5.6: Miscellaneousfile operations 29

Insert From PreviousPrompt Ct r | +J 3.33.1: Listener commands 89

Insert Multi Line Comment For Selection Al t +# 4.6: Comments 118

Insert Page Directory 3.22: Pages 64

Insert Parentheses For Selection Al t +(4.7 : Parentheses 119

Insert Parse Default Ct r | +P 3.29.4: Deleting and inserting text inthe echo area 85
Insert Register Ctrl +X G 3.25: Registers 76

Insert Selected Text Ct r | +C Ctr| +C 3.29.4: Deleting and inserting text intheecho area 85
Insert Word Abbrevs ~ 3.27: Abbreviations 81

Inspect Star Gt r | +C Ctr | +l 3.33.1: Listener commands 89
Inspect Variable 3.36: Interaction with the GUI andthe IDE 98

Interrupt Shell Subjob Ctr1 +C Ctrl +C 3.34.2: Invoking and using a Shell tool 94
Inverse Add Global Word Abbrev Ct r | +X - 3.27: Abbreviations 79

Inverse Add ModeWord Abbrev Ct r |1 +X Ctr|l +H 3.27: Abbreviations 79
Invoke Menu Item 3.36: Interaction with the GUI and the IDE 97
Invoke Tool 3.36: Interaction with the GUI and the IDE 97

| Search Backward Regexp Al t +Ct r | +R 3.23.2: Regular expression searching 71
ISearch Forward Regexp Al t +Ct r| +S 3.23.2: Regular expression searching 71
JumptoRegister Ctrl +X J 3.25: Registers 75

Jump to Saved Position 3.25: Registers 75

Just One Space Al t +Space 3.11.1: Deleting Text 46

Keyboard MacroQuery Ct r I +X Q 3.28: Keyboard macros 82

Kill Backward Up List 4.4.2: Killingforms 115

Kill Buffer Ctr | +X K 3.20: Buffers 59

Kill Comment Al t +Ct r | +; 4.6: Comments 118

Kill LineCtr | +K 3.11.2: Killingtext 48

Kill Next Word Al t +D 3.11.2: Killingtext 47

Kill ParseCt r1 +U 3.29.4: Deleting and inserting text intheecho area 85

Kill PreviousWord Al t +Del ete 3.11.2: Killingtext 47

Kill RegionCt r | +W 3.11.2: Killingtext 48

Kill Register 3.25: Registers 75

Kill Shell Subjob 3.34.2: Invoking and using a Shell tool 95

Kill SomeBuffers 3.20: Buffers 59

Last Keyboard MacroCt r | +X E 3.28: Keyboard macros 82
Lineto Top of Window 3.8: Movement 40
LispInsert) 4.7: Parentheses 120

196

Index

Lisp Insert) Indenting Top Level ~ 4.7: Parentheses 120

Lisp Mode 3.26.1: Major modes 77

List Buffer Definitions 3.36: Interaction with the GUI and the IDE 98
List BuffersCtrl +X Ctrl +B 3.20: Buffers 59

List Callees 4.3.4: Functioncallersand callees 110

List Callers 4.3.4: Function callersand callees 110

List Definitions 4.3.2: Definition searching 106

List DefinitionsFor Dspec 4.3.2: Definition searching 106

List Directory 3.5.6: Miscellaneousfile operations 30

List FacesDisplay 3.38: Obscure commands 100

List Matching Lines 3.23.1: Searching 68

List Registers 3.25: Registers 75

List Unwritable Characters 3.5.3.2: Unwritable characters 26

List Word Abbrevs ~ 3.27: Abbreviations 80

Load File 4.9.2: Evaluation commands 123

Load FileIn Listener 4.9.2: Evaluation commands 124
LowercaseRegion Ctrl +X Ctrl +L 3.15: Caseconversion 52
LowercaseWord Al t +L 3.15: Caseconversion 51

Macroexpand Form Ct r | +Shi ft +M 4.4.3: Macro-expansion of forms 115
MakeDirectory 3.5.6: Miscellaneousfile operations 30

MakeWord Abbrev 3.27: Abbreviations 79

Mark Defun Al t +Ct rl +H 4.3.1: Movement, marking and specifying indentation
Mark Form Al t +Ctrl +@ 4.4.1: Movement, marking and indentation 114
Mark PageCtr| +X Ctrl +P 322: Pages 64

Mark Paragraph Al t +H 3.9.1: Marks 44

Mark Sentence 39.1: Marks 44

Mark WholeBuffer Ctrl +X H 3.9.1: Marks 44

Mark Word Al t +@ 3.9.1: Marks 44

MoveOver)Al t +) 4.7: Parentheses 120

Move To Window Line Al t +Shi ft +R 3.8: Movement 40
NameKeyboard Macro 3.28: Keyboard macros 82

Negative Argument 3.4: Using prefix arguments 21

New Buffer ~ 3.20: Buffers 60

New LineReturn 3.12: Insertingtext 49

New Window Ct r1 +X 2 3.21: Windows 61

Next Breakpoint 4.11.2: Moving between breakpoints 130

Next Grep 3.36: Interaction with the GUI and the IDE 98
NextLineCtrl +N 3.8: Movement 38

Next Ordinary Window Ct r| +X O 3.21: Windows 61

Next Page Ct r | +X] 3.22: Pages 64

Next Parse Al t +N 3.29.2: Repeating echo area commands 84

197

104

Index

Next Search Match ~ 3.36: Interaction with the GUI and the IDE 98
Next Window 3.21: Windows 61

OpenlLineCtrl +O 3.12: Insertingtext 50

Overwrite Delete Previous Character ~ 3.17: Overwriting 54
OverwriteMode 3.17: Overwriting 53

Point to Register Ct r | +X / 3.25: Registers 75

Pop and GotoMark 3.9.1: Marks 43

Pop Mark Al t +Ct r| +Space 3.9.1: Marks 43

Prepend to Register 3.25: Registers 75

Previous Breakpoint 4.11.2: Moving between breakpoints 130
Previous FocusWindow 3.21: Windows 62

PreviousLineCtr| +P 3.8: Movement 38

PreviousPage Ct r | +X 3.22: Pages 63

PreviousParse Al t +P 3.29.2: Repeating echo area commands 84
PreviousWindow 3.21: Windows 61

Print File 3.5.6: Miscellaneousfile operations 29

Print Region 3.9.2: Regions 45

ProcessFile Options 3.5.6: Miscellaneousfile operations 29

Put Register 3.25: Registers 75

Query Replace Al t +Shi ft +% 3.23.3: Replacement 71

Query ReplaceRegexp 3.23.3: Replacement 73

Quoted Insert &t r 1 +Q 3.12: Insertingtext 50

QuoteTab 3.18: Indentation 56

Read Word Abbrev File 3.27: Abbreviations 81

Reconnect RemotelListener 4.15: Remotedebugging 133

Redo 3.38: Obscurecommands 100

Reevaluate Defvar ~ 4.9.2: Evaluation commands 122
Re-evaluate Defvar ~ 4.9.2: Evaluation commands 122

Refresh Screen Ct r | +L 3.21: Windows 63

Regexp Forward Search 3.23.2: Regular expression searching 71
Regexp Reverse Search 3.23.2: Regular expression searching 71
Register toPoint 3.25: Registers 75

Remote Evaluate Buffer ~ 4.15: Remote debugging 133

Remote Evaluate Defun 4.15: Remote debugging 133

Remote Evaluate Defun In Listener 4.15: Remotedebugging 133
Remote Evaluate Last Form 4.15: Remote debugging 133
Remote Evaluate Last Form In Listener ~ 4.15: Remotedebugging 133
Remote Evaluate Region 4.15: Remote debugging 133

Remote Evaluate Region In Listener 4.15: Remote debugging 133
Remote Shell 3.34.2: Invoking and using a Shell tool 94

Rename Buffer ~ 3.20: Buffers 60

RenameFile 3.5.6: Miscellaneousfile operations 30

198

Index

Replace Regexp 3.23.3: Replacement 73

Replace String 3.23.3: Replacement 71

Report Bug 3.36: Interaction with the GUI andthe IDE 99

Report Manual Bug 3.36: Interaction with the GUI and the IDE 99
Reset Echo Area Al t +K 3.29.6: Leavingtheechoarea 86
Return Default Ct r | +R 3.29.4: Deleting and inserting text in the echo area 85
ReverseIncremental Search Ct r | +R 3.23.1: Searching 67
ReverseSearch 3.23.1: Searching 68

Revert Buffer ~ 3.5.6: Miscellaneousfile operations 29

Revert Buffer With External Format 3.5.6: Miscellaneous file operations 29
Room 3.37: Miscellaneous 99

Rotate Active FindersAl t +Ct r | +, 4.3.2: Définition searching 108
RotateKill Ring Al t +Y 3.12: Insertingtext 49

Run Command 3.34.1: Running shell commands directly fromthe editor 93
Save All Filesand Exit Ctr 1 +X Ctrl +C 35.2: Savingfiles 24
SaveAll FilessCtr| +X S 352: Savingfiles 23

Save Buffer Pathname 3.5.6 : Miscellaneousfile operations 30
SaveFileCtr| +X Ctrl+S 352: Savingfiles 23

Save Position 3.25: Registers 75

SaveRegion Al t +W 3.11.2: Killingtext 48

Scroll Next Window Down ~ 3.21: Windows 62

Scroll Next Window Up ~ 3.21: Windows 62

Scroll Window Down Ct r 1 +V 3.8: Movement 39

Scroll Window Down In Place 3.8: Movement 42

Scroll Window Down Moving Point Next 3.8: Movement 42
Scroll Window Down Preserving Highlight ~ 3.8: Movement 41
Scroll Window Down Preserving Point 3.8: Movement 43

Scroll Window Up Al t +V 3.8 Movement 40

Scroll Window Up In Place 3.8: Movement 42

Scroll Window Up Moving Point Pr i or 3.8: Movement 42
Scroll Window Up Preserving Highlight ~ 3.8: Movement 42

Scroll Window Up Preserving Point 3.8: Movement 42

Search All Buffers 3.23.1: Searching 68

Search Buffers 3.23.1: Searching 69

Search FilesCt r| +X * 3.23.1: Searching 69

Search FilesMatching PatternsCt r | +X & 3.23.1: Searching 69
Search System 3.23.1: Searching 70

Select Buffer Ctrl +X B 3.20: Buffers 58

Select Buffer Other Window 3.20: Buffers 58

Select GoBack Ctr| +X M 3.10: Locations 45

Select Previous Buffer Al t +Ct r | +L 3.20: Buffers 58

199

Index

Self Insert 3.12: Insertingtext 50

Self Overwrite 3.17: Overwriting 53

Set Buffer Output 4.9.1: General Commands 122

Set Buffer Package 4.9.1: General Commands 122

Set Buffer Transient Edit 3.20: Buffers 60

Set Comment Column Ctr | +X ; 4.6: Comments 117

Set Default Remote Debugging Connection 4.15: Remote debugging 134
Set External Format 3.5.3.1: Controlling the external format 25

Set Fill Column Ctrl +X F 3.19.1: Fill commands 56

Set Fill Prefix Ct rl +X . 3.19.1: Fill commands 57

Set Mark Ct rl +Space 3.9.1: Marks 43

Set Prefix Argument Ct r | U 3.4: Using prefix arguments 21

Set Title 3.36: Interaction with the GUI and the IDE 96

Set Variable 3.30: Editor variables 87

Shell Command Al t +! 3.34.1: Running shell commands directly fromthe editor 93
Shell Command On Region Al t +| 3.34.1: Running shell commands directly from the editor
Shell SendEof Ctr| +C Ctrl +D 3.34.2: Invoking and using a Shell tool 95
Show Directory ~ 3.36: Interaction with the GUI and the IDE 99

Show Documentation Al t +Ct r | +Shi ft +A 4.8: Documentation 121
Show Documentation for Dspec 4.8 : Documentation 121

Show PathsFrom 4.3.4: Function callersand callees 111

Show Paths To 4.3.4: Function callersand callees 110

Show Variable 3.30: Editor variables 87

Skip Whitespace 3.8: Movement 41

Split Window Horizontally ~ 3.21: Windows 62

Split Window Vertically 3.21: Windows 62

Stepper Breakpoint 4.12: Sepper commands 130

Stepper Continue 4.12: Stepper commands 130

Stepper Macroexpand 4.12: Sepper commands 130

Stepper Next 4.12: Sepper commands 130

Stepper Restart 4.12: Stepper commands 130

Stepper Show Current Source 4.12: Sepper commands 130

Stepper Step 4.12: Sepper commands 130

Stepper Step Through Call 4.12: Sepper commands 130

Stepper Step ToCall 4.12: Sepper commands 130

Stepper Step ToCursor 4.12: Sepper commands 130

Stepper Step TOEnd 4.12: Sepper commands 130

Stepper Step ToValue 4.12: Sepper commands 130

Stepper Undo Macroexpand 4.12: Sepper commands 130

Stop Shell Subjob Ctr1 +C Ctrl +Z 3.34.2: Invoking and using a Shell tool 95
System Query Replace 3.23.3: Replacement 72

System Search 3.23.1: Searching 70

200

Index

TagsQuery Replace 4.3.2: Definition searching 108
TagsSearch 4.3.2: Definition searching 107

Terminate Shell Subjob 3.34.2: Invoking and using a Shell tool 95
Text Mode 3.26.1: Major modes 77

Throw out of Debugger 3.33.3: Debugger commands 92
Throw ToTop Level Al t +K 3.33.1: Listener commands 89
Toggle Auto Save 3.5.4: Auto-savingfiles 27

Toggle Breakpoint 4.11.1: Setting and removing breakpoints 129
Toggle Buffer Read-Only Ctr | +X Ctrl +Q 3.20: Buffers 60
Toggle Count Newlines 3.21: Windows 63

Toggle Current Definition Folding ~ 4.14: Definition folding 132
ToggleError Catch 4.9.2: Evaluation commands 124

Toggle Global SimpleUndo 3.38: Obscure commands 100
Toggle Showing Cursor Info 3.29.5: Display of information intheecho area 86
Top of Window 3.8: Movement 40

Trace Definition 4.3.3: Tracing functions 109

Trace Definition Inside Definition 4.3.3: Tracing functions 109
Trace Function 4.3.3: Tracing functions 108

Trace Function Inside Definition 4.3.3: Tracing functions 109
Transpose CharactersCt r | +T 3.16: Transposition 52
TransposeFormsAl t +Ctr | +T 4.4.4: Miscellaneous 116
TransposeLinesCt r1 +X Ctrl +T 3.16: Transposition 53
Transpose Regions 3.16: Transposition 53

Transpose Words Al t +T 3.16: Transposition 53

Uncomment Multi LineComment 4.6: Comments 118
Undefine 4.13.1: Undefining one definition 131

Undefine Buffer 4.13.2: Removing multiple definitions 131
UndefineCommand 4.13.1: Undefining one definition 131
UndefineRegion 4.13.2: Removing multiple definitions 131
UndoCtrl +Shift+_ 3.14: Undoing 51

Unexpand Last Word ~ 3.27: Abbreviations 80

Unfold Buffer Definitions 4.14: Definition folding 132

Un-Kill AsFilename 3.12: Insertingtext 49

Un-Kill AsString 3.12: Insertingtext 49

Un-KillCtrl +Y 3.12: Insertingtext 49

Unsplit Window 3.21: Windows 63

UntraceAll 4.3.3: Tracing functions 109

Untrace Definition 4.3.3: Tracing functions 109

Untrace Function 4.3.3: Tracing functions 109

Up Comment LineAl t +P 4.6: Comments 118

Uppercase RegionCt r 1 +X Ctrl +U 3.15: Caseconversion 52
UppercaseWord Al t +U 3.15: Caseconverson 52

201

Index

View Page Directory 3.22: Pages 64

View Source Search 4.3.2: Definition searching 106

Visit File 35.1: Findingfiles 22

Visit Other TagsFile 4.3.2: Definition searching 108

Visit TagsFile 4.3.2: Définition searching 108

Walk Form Al t +Shi ft +M 4.4.3: Macro-expansion of forms 116
wfind FileCtrl +X Crl +F 351: Findingfiles 22

What Command Ctrl +H C 3.3.1: Thehelpcommand 18

What Cursor Position Ct r | +X = 3.29.5: Display of information in the echo area 86
What Line 3.8: Movement 39

What LossageCt rl +H L 3.3.1: Thehelpcommand 19
WherelsCtrl +H W 3.3.1: Thehelpcommand 19
WhereisPoint 3.29.5: Display of information in the echo area 86
Word Abbrev Apropos 3.27: Abbreviations 80

Word Abbrev Prefix Point Al t +' 3.27: Abbreviations 80
WriteFileCtrl +X Crl +W 35.2: Savingfiles 23
WriteRegion 35.2: Savingfiles 23
WriteWord Abbrev File 3.27: Abbreviations 81
ZapToChar Al t+Z 3.11.2: Killingtext 49
editor-error function 6.3.7: Editor errors 150
editor errors

debugging 3.37: Miscellaneous 99
EDI TORpackage 6.3: Programming the editor 140

editor sourcecode 6.4 : Editor sourcecode 161
Editor tool 4.3.4: Functioncallersand callees 111, 4.3.4: Functioncallersand callees 111
editor variable 3.30: Editor variables 86, 6.3.15: Editor variables 157

edi tor-vari abl e-docunent ati on function 6.3.15: Editor variables 157
Editor Variables

abbr ev- pat hname-defaul ts 3.27: Abbreviations 81

add-newl i ne-at-eof -on-witing-file 352: Singfiles 24
auto-fill-space-indent 319.2: Auto-Fill mode 58

aut o- save- checkpoi nt-frequency 354: Auto-savingfiles 28
aut o- save- cl eanup- checkpoi nts 354: Auto-savingfiles 28
aut o- save-fil ename-pattern 354: Auto-savingfiles 27

aut o- save- key-count -t hreshol d 35.4: Auto-savingfiles 27
backup-fil enane-pattern 355: Backing-upfilesonsaving 28
backup-fil enane-suffix 355: Backing-upfilesonsaving 28
backups-want ed 3.5.5: Backing-upfilesonsaving 28
break-on-editor-error 3.37: Miscellaneous 99
case-replace 3.233: Replacement 72

conment -begin 4.6: Comments 119

202

Index

coment-colum 4.6: Comments 119
comment -end 4.6: Comments 119
comrent -start 4.6: Comments 119
conpar e-i gnor es- whi t espace 3.24: Comparison 74
conpil e-buffer-file-confirm 4.9.4: Compilationcommands 127
current - package 4.9.1: General Commands 121
def aul t - aut o- save-on 354: Auto-savingfiles 27
defaul t-buffer-el ement-type 3.20: Buffers 60
def aul t - modes 3.26.3: Default modes 77
defaul t-search-kind 3231: Searching 70
eval uat e-defvar-action 492: Evaluation commands 122
fill-colum 319.1: Fill commands 56
fill-prefix 3.19.1: Fill commands 56
font-1ock-nmark-bl ock-function 4.2: Sntaxcoloring 103
hi ghl i ght - mat chi ng- parens 4.7: Parentheses 119
i ncrenent al -search-m ni nrumvi si ble-1ines 3231: Searching 66
i nput -format-default 353.1: Controlling the external format 25
i search-Il ax-whi tespace 3.231: Searching 66
i search-regexp-| ax-whitespace 323.1: Searching 66
out put-format-default 353.1: Controlling the external format 26
prefix-argunment-default 34: Usingprefixarguments 21
pronpt -regexp-string 3.342: Invoking and using a Shell tool 94
regi on-query-size 3.92: Regions 45
repl ace- | ax-whi t espace 3.23.1: Searching 66
repl ace-regexp-| ax-whi tespace 3.23.1: Searching 66
revert-buffer-confirm 356: Miscellaneousfile operations 29
save-all-files-confirm 352: Savingfiles 23
scroll-overlap 38: Movement 40
sear ch-whi t espace-regexp 3.23.1: Searching 67
shel | -cd-regexp 3.34.2: Invoking and using a Shell tool 94
shel | - popd-regexp 3.34.2: Invoking and using a Shell tool 94
shel | - pushd-regexp 3.342: Invoking and using a Shell tool 94
spaces-for-tab 3.18: Indentation 54
undo-ring-size 3.14: Undoing 51

Edit Recognized Source 4.9.4: Compilation commands 128

Edit Word Abbrevs 3.27: Abbreviations 81

EmacsCommand 5.2.3: Accessing Emacskeys 136

encoding
default forinput ~ 3.5.3.1: Controlling the external format 25
default for output ~ 3.5.3.1: Controlling the external format 26

203

Index

setting 3.5.3.1: Controlling the external format 25
unwritable character ~ 3.5.3.2: Unwritable characters 26
unwritable characters ~ 3.5.3.2: Unwritable characters 26
End Keyboard Macro 3.28: Keyboard macros 82
end-line-p function 6.34: Points 148
End of Buffer ~ 3.8: Movement 41
End of Buffer Preserving Point ~ 3.8: Movement 41
End of Defun 4.3.1: Movement, marking and specifying indentation 104
Endof Line 3.8: Movement 38
End of Window 3.8: Movement 41
error
catching evaluation 4.9.2: Evaluation commands 124
editor 6.3.7: Editor errors 150
error functions 6.3.7: Editor errors 150
Escape+Escape EvaluateExpression 4.9.2: Evaluation commands 123
Escapekey 2.5.1: Modifier keys- Command, Ctrl, Alt and Meta 11
evaluate
buffer 4.9.2: Evaluation commands 123
buffer changed definition ~ 4.9.2: Evaluation commands 124
changed definitions ~ 4.9.2: Evaluation commands 124
defvar 4.9.2: Evaluation commands 122
expression 4.9.2: Evaluation commands 123
file 4.9.2: Bvaluation commands 123, 4.9.2: Evaluation commands 124
form 4.9.2: Evaluation commands 122, 4.9.3: Evaluationin Listener commands 124
last form 4.9.2: Evaluation commands 123, 4.9.3: Evaluationin Listener commands 125
nearest form 4.9.2: Evaluation commands 123, 4.9.3: Evaluation in Listener commands 125
nextform 4.9.2: Evaluationcommands 123, 4.9.3: Evaluationin Listener commands 125
region 4.9.2: Evaluation commands 123, 4.9.3: Evaluationin Listener commands 125
system changed definitions 4.9.2: Evaluation commands 124
Evaluate Buffer ~ 4.9.2: Evaluation commands 123
Evaluate Buffer Changed Definitions 4.9.2: Evaluation commands 124
Evaluate Changed Definitions ~ 4.9.2: Evaluation commands 124
Evaluate Defun 4.9.2: Evaluation commands 122
Evaluate Defun In Listener ~ 4.9.3: Evaluation in Listener commands 124
eval uat e- def var-acti on editorvarisble 4.9.2: Evaluation commands 122
Evaluate Expression 4.9.2: Evaluation commands 123
EvaluateLast Form 4.9.2: Evaluation commands 123
Evaluate Last Form In Listener ~ 4.9.3: Evaluation in Listener commands 125
Evaluate Nearest Form 4.9.2: Evaluation commands 123
Evaluate Nearest Form In Listener ~ 4.9.3: Evaluationin Listener commands 125

Evaluate Next Form 4.9.2: Evaluation commands 123

204

Index

Evaluate Next Form In Listener ~ 4.9.3: Evaluationin Listener commands 125
Evaluate Region 4.9.2: Evaluation commands 123

Evaluate Region In Listener ~ 4.9.3: Evaluationin Listener commands 125
Evaluate System Changed Definitions 4.9.2: Evaluation commands 124

evaluation commands 4.9: Evaluation and compilation 121, 4.9.2: Evaluation commands 122, 4.9.3: Evaluationin Listener
commands 124

examples
programming the editor ~ 6.3.18: Examples 160, 7: Self-contained examples 163
Exchange Point and Mark 3.9.1: Marks 44
executemode 3.26.2: Minor modes 77
Executeor Insert Newline or Yank from PreviousPrompt ~ 3.33.1: Listener commands 89
executing editor commands 2.5: Executing commands 11, 3.2: Executing commands 17
Exit Lisp 3.36: Interaction with the GUl and the IDE 99
Exit Recursive Edit 3.31: Recursiveediting 87
Expand FileName 3.6: Filename completion 31
Expand File Name With Space 3.6: Filename completion 31
expansion
of filenames 3.6: Filenamecompletion 31
expression
evaluste 4.9.2: Evaluation commands 123
ext ended- char type 3.5.3.2: Unwritablecharacters 26
Extended Command 2.5.2: Two waysto execute commands 12, 3.2: Executing commands 17
external format
default forinput 3.5.3.1: Controlling the external format 25
default for output ~ 3.5.3.1: Controlling the external format 26
setting 3.5.3.1: Controlling the external format 25
unwritable character ~ 3.5.3.2: Unwritable characters 26
unwritable characters ~ 3.5.3.2: Unwritable characters 26
external formats 6.3.8.1: Fileencodingsinthe editor 153
Extract List 4.4.2: Killing forms 115

=

face systemclass 6.3.17: Faces 159
faces 6.3.17: Faces 159
fast-save-all-buffers function 6.38: Files 152
file
auto-saving 3.5.4: Auto-saving files 27
backup 3.5.2: Savingfiles 24, 3.5.5: Backing-upfilesonsaving 28
compile 4.9.4: Compilation commands 126
delete 3.5.6: Miscellaneousfile operations 30
delete and kill buffer ~ 3.5.6: Miscellaneous file operations 30
editor definition 2.1.2: Filesand buffers 9

evauate 4.9.2: Evaluation commands 123, 4.9.2: Evaluation commands 124

205

Index

expand name 3.6: Filename completion 31
find dternate 3.5.1: Finding files 22
finding 3.5.1: Findingfiles 22
insert into buffer ~ 3.5.6 1 Miscellaneousfile operations 29
optionsfor buffer ~ 3.5.6: Miscellaneousfile operations 29
print 3.5.6: Miscellaneousfile operations 29
rename 3.5.6: Miscellaneousfile operations 30
save 352: Savingfiles 23
saveal andexit 35.2: Savingfiles 24
set external format 3.5.3.1: Controlling the external format 25
unwritable character ~ 3.5.3.2: Unwritable characters 26
unwritable characters ~ 3.5.3.2: Unwritable characters 26
write 3.5.2: Savingfiles 23
fileencodings 6.3.8.1: Fileencodingsinthe editor 153
filefunctions 6.3.16: Windows 158
filehandlingcommands 2.6.2: Filehandling 13, 3.5: Filehandliing 21
filename completion 3.6: Filenamecompletion 31, 3.6: Filenamecompletion 31
filename expansion 3.6: Filename completion 31
files
search 3.23.1: Searching 69, 3.23.1: Searching 69
fill-colum editorvarigble 3.19.1: Fill commands 56
fillingcommands 3.19: Filling 56
Fill Paragraph 3.19.1: Fill commands 56
fill-prefix editorvarigble 3.19.1: Fill commands 56
Fill Region 3.19.1: Fill commands 56
Find AlternateFile 3.5.1: Findingfiles 22
Find Command Definition ~ 4.3.2: Definition searching 105
Find File 3.5.1: Findingfiles 22
find-file-buffer function 6.38: Files 151
Find File With External Format 3.5.3.1: Controlling the external format 25
finding editor sourcecode 4.3.2: Definition searching 105, 4.3.2: Definition searching 106
Find Key Definition ~ 4.3.2: Definition searching 106
find-1ikely-function-ignores vaiable 6311: Lisp 153
Find Matching Parse 3.29.2: Repeating echo area commands 84
Find Mismatch 4.7: Parentheses 120
Find Non-Base-Char ~ 3.5.3.2: Unwritable characters 27
Find Source 4.3.2: Definition searching 105
Find Source For Current Package 4.3.2: Definition searching 106
Find Sourcefor Dspec 4.3.2: Definition searching 105
Find Tag 4.3.2: Definition searching 107
Find Unbalanced Parentheses 4.7 : Parentheses 120

206

Index

Find Unwritable Char acter
Flush Sections
Fold Buffer Definitions

3.5.3.2: Unwritable characters
3.38: Obscure commands 101

4.14 : Definition folding 132
4.14: Definition folding 131

4.2: Syntax coloring 103

4.2: Syntax coloring 103

folding definitions
Font L ock Fontify Block
Font Lock Fontify Buffer
font -1 ock- mar k- bl ock-function editor variable
Font Lock Mode 4.2: Syntax coloring 103

26

4.2: Syntax coloring 103

4.9.2: Evaluationcommands 123, 4.9.3: Evaluationin Listener commands 125

4.9.2: Evaluationcommands 123, 4.9.3: Evaluationin Listener commands 125

Evaluation in Listener commands 125

ForceUndo 3.7.3: Explicit editing of the Directory mode buffer 35
form
compile 4.9.4: Compilation commands 126
evaluate 4.9.2: Evaluation commands 122, 4.9.3: Evaluationin Listener commands 124
evaluate |ast
evaluate nearest
evaluatenext 4.9.2: Evaluation commands 123, 4.9.3:
indent 4.4.1: Movement, marking and indentation 114

kill backwards 4.4.2: Killingforms 115

kill forwards 4.4.2: Killing forms 115
macro-expand 4.4.3: Macro-expansion of forms 115
mark 4.4.1: Movement, marking and indentation 114

move to beginning
movetoend 4.4.1: Movement, marking and indentation
4.4.4: Miscellaneous 116

44: Forms 114

transposition
form commands
6.3.12: Movement
38

form of fset function 154

Forward Character 3.8: Movement
Forward Form 4.4.1: Movement, marking and indentation
Forward Kill Form 4.4.2: Killingforms 115

Forward Kill Sentence 3.11.2: Killingtext 48

Forward List 45.1: Movement 116
Forward Paragraph 3.8: Movement 39
Forward Search 3.23.1: Searching 67
Forward Sentence 3.8: Movement 39
Forward Up List 4.5.1: Movement 116
Forward Word 3.8: Movement 38
function

argument list 4.3.6: Miscellaneous 112

bresk 4.3.3: Tracing functions 109

break onexit 4.3.3: Tracing functions 109

describegeneric 4.3.6: Miscellaneous 113
documentation 4.8 : Documentation 121,

editcalees 4.3.4: Functioncallersand callees 111

4.4.1: Movement, marking and indentation
114

4.8 : Documentation

114

114

121

207

Index

editcallers 4.3.4: Function callersand callees 111
editing 4.3: Functions and definitions 104
find definition ~ 4.3.2: Definition searching 104
indentation 4.3.1: Movement, marking and specifying indentation 104
listcallees 4.3.4: Function callersand callees 110, 4.3.4: Function callersand callees 111
listcallers 4.3.4: Function callersand callees 110, 4.3.4: Function callersand callees 110
mark 4.3.1: Movement, marking and specifying indentation 104
moveto beginning 4.3.1: Movement, marking and specifying indentation 104
movetoend 4.3.1: Movement, marking and specifying indentation 104
trace 4.3.3: Tracing functions 108
traceinside 4.3.3: Tracing functions 109
untrace 4.3.3: Tracing functions 109
Function Arglist 4.3.6: Miscellaneous 112
Function Arglist Displayer ~ 4.3.6: Miscellaneous 113
Function Argument List 4.3.6: Miscellaneous 113

Function Call Browser tool 4.3.4: Function callersand callees 110, 4.3.4: Functioncallersand callees 110, 4.3.4: Function callers and
callees 110, 4.3.4: Functioncallersand callees 111

Function Documentation ~ 4.8: Documentation 121

Functions
bi nd- key 6.1: Customizing default key bindings 138
bi nd-string-to-key 6.1: Customizing default key bindings 139
buffer 6.3.3: Buffers 142, 6.3.16: Windows 158
buffer-fromnanme 6.3.3.2: Buffer operations 145
buf fer-name 6.3.3.2: Buffer operations 145
buf f er - pat hnane 6.3.8: Files 152
buf f er-poi nt 6.3.3.2: Buffer operations 145
buf fers-end 6.3.3.2: Buffer operations 145
buffers-start 6.3.3.2: Buffer operations 145
buf fer-val ue 6.3.15: Editor variables 158
caling 6.3.1: Calling editor functions 140
change- buf fer-1ock-for-nodification 633.1: Bufferlocking 144
character-offset 6.3.12: Movement 154
check- di sk-versi on-consi stent 638: Files 152
cl ear-echo-area 6.3.6: Theechoarea 150
cl ear-undo 6.3.3.2: Buffer operations 146
conpl ete-in-place 6.3.14: In-placecompletion 156
conpl et e-wi t h- non-f ocus function 6.3.14: In-place completion 156
copy-point 6.34: Points 148
current-buffer 6332: Buffer operations 144
current-mark 634: Points 147
current-point 6.34: Points 147

208

Index

current-w ndow 6.3.16: Windows 158

def i ne-editor-node-variable 6.3.15: Editor variables 157
define-editor-variable 6315 Editor variables 157
def rode 3.26.4: Definingmodes 77

del ete-point 6.34: Points 148

echoarea 6.3.6: Theechoarea 150, 6.3.18: Examples 160
editor error 6.3.7: Editor errors 150

editor-error 6.3.7 : Editor errors 150

edi tor-vari abl e-docunmentati on 6.3.15: Editor variables 157
end-line-p 6.34: Points 148
fast-save-all-buffers 6.38: Files 152

file 6.3.16: Windows 158

find-file-buffer 6.38: Files 151

form of f set 6.3.12: Movement 154

got o-buffer 6.3.3.2: Buffer operations 146

insertingtext 6.3.9: Insertingtext 153

insert-string 6.39: Insertingtext 153
kill-ring-string 6.39: Insertingtext 153

line-end 6.3.12: Movement 154

line-of fset 6.3.12: Movement 154

line-start 6.3.12: Movement 154

Lispeditor 6.3.11: Lisp 153

make- buf fer 6.3.3.2: Buffer operations 145

make-face 6.3.17: Faces 159

nmessage 6.3.6: Theechoarea 150
movement 6.3.12: Movement 154, 6.3.16: Windows 158

nove- poi nt 6.34: Points 148

point 6.34: Points 146

point/= 634: Points 147

poi nt< 6.34: Points 148

poi nt<= 6.34: Points 148

poi nt= 6.3.4: Points 147

poi nt> 6.34: Points 148

poi nt >= 6.3.4: Points 148

poi nt-kind 6.34: Points 147

poi nts-to-string 6.39: Insertingtext 153
process- char act er 6.3.1: Calling editor functions 140
prompt 6.3.13: Prompting theuser 155

prompt -for-buffer 63.13: Promptingtheuser 155
pronmpt-for-file 6.313: Promptingtheuser 155

209

Index

pronpt-for-integer 6.3.13: Promptingtheuser 155
prompt-for-string 6.3.13: Prompting theuser 155
pronmpt-for-variable 6.3.13: Promptingtheuser 155
redi splay 6.3.16: Windows 158
regul ar - expressi on-search 6.35: Regular expression searching 149
same-line-p 634: Points 148
search-files 3.23.1: Searching 70
set-buffer-name-directory-delinters 6.38: Files 151
set-current-mark 6.34: Points 147
set-interrupt-keys 6.1: Customizing default key bindings 139
set - pat hnane- | oad-function 6.38: Files 152
set up-i ndent 6.2 : Customizing Lisp indentation 139
start-line-p 6.34: Points 148
variable 6.3.15: Editor variables 157
vari abl e-val ue-if-bound 6.3.15: Editor variables 158
window 6.3.16: Windows 158
wi ndow buf fer 6.3.3.2: Buffer operations 145
Wi ndow-t ext - pane 6.3.16: Windows 159
Wi t h-runni ng- operati on 6.3.1: Calling editor functions 141
wor d- of f set 6.3.12: Movement 154

fundamental mode 3.26.1: Major modes 76, 3.26.1: Major modes 76

G
generic function
describe 4.3.6: Miscellaneous 113
Generic Describe 3.3.1: Thehelpcommand 18
Generic Function Browser tool 4.3.6: Miscellaneous 113, 4.3.6: Miscellaneous 114
Get Register 3.25: Registers 76
global abbreviation
editor definition 3.27 : Abbreviations 78
Global Font Lock Mode 4.2: Syntax coloring 103
GoBack 3.10: Locations 45
GoForward 3.10: Locations 45
got o- buf fer function 6.3.3.2: Buffer operations 146
GotoLine 3.8: Movement 39
GotoPage 3.22: Pages 64
GotoPoint 3.8: Movement 41
Grep 3.36: Interaction with the GUI and the IDE 98
grep- conmmand 3.36: Interaction with the GUI andthe IDE 98

210

Index

H

Help 3.3.1: Thehelpcommand 17

helpcommands 2.6.8: Help 14, 3.3: Help 17
Helpon Parse 3.29.1: Completing commands 83

hi ghl i ght - mat chi ng- par ens editor variable 4.7: Parentheses 119
History First 3.33.2: History commands 89

History Kill Current 3.33.2: History commands 90
History Last ~ 3.33.2: History commands 90

History Next 3.33.2: History commands 90

history of commands 3.3.1: Thehelp command 19
History Previous 3.33.2: History commands 90

history ring 3.29.2: Repeating echo area commands 84
History Search 3.33.2: History commands 90

History Search From Input ~ 3.33.2: History commands 90
History Select 3.33.2: History commands 91

History Yank 3.33.2: History commands 91

I

Illegal 3.32: Keybindings 88

Incremental Search 3.23.1: Searching 65, 3.23.1: Searching 66

i ncrenent al - sear ch-mi ni num vi si bl e-1ines editorvariable 3.23.1: Searching 66

Indent 3.18: Indentation 54
form 4.4.1: Movement, marking and indentation 114

indentation
customising 6: Advanced Features 138, 6.2: Customizing Lispindentation 139
customizing 6: Advanced Features 138, 6.2: Customizing Lisp indentation 139
definefor Lispforms 4.3.1: Movement, marking and specifying indentation 104
definefor Lisp functions 4.3.1: Movement, marking and specifying indentation 104
delete 3.18: Indentation 55
movebackto 3.18: Indentation 55

indentation commands 3.18: Indentation 54

Indent for Comment 4.6: Comments 117

Indent Form 4.4.1: Movement, marking and indentation 114

indenting 6.3.10: Indentation 153

Indent New Comment Line 4.6: Comments 118

Indent New Line 3.18: Indentation 55

Indent or Complete Symbol 4.3.5: Indentation and Completion 111

Indent Region 3.18: Indentation 54

Indent Rigidly 3.18: Indentation 55

Indent Selection 3.18: Indentation 55

Indent Selection or Complete Symbol ~ 4.3.5: Indentation and Completion 111

i ndent-wi t h-tabs variable 6.3.10: Indentation 153

211

Index

In-place completion 6.3.14: In-place completion 156

i nput - format-defaul t editorvariable 3.5.3.1: Controlling the external format
Insert () 4.7: Parentheses 119

Insert Buffer ~ 3.20: Buffers 60

Insert Cut Buffer ~ 3.35.1: Buffersand windows 96

Insert Double Quotes For Selection 4.4.4: Miscellaneous 116

Insert File 3.5.6: Miscellaneousfile operations 29

Insert From PreviousPrompt 3.33.1: Listener commands 89

inserting text commands 2.6.3: Insertingtext 13, 3.12: Insertingtext 49
inserting text functions 6.3.9: Insertingtext 153

Insert Multi Line Comment For Selection 4.6: Comments 118

Insert Page Directory 3.22: Pages 64

Insert Parentheses For Selection 4.7: Parentheses 119

Insert Parse Default 3.29.4: Deleting and inserting text intheecho area 85
Insert Register 3.25: Registers 76

Insert Selected Text 3.29.4: Deleting and inserting text intheecho area 85
insert-string function 6.39: Insertingtext 153

Insert Word Abbrevs 3.27: Abbreviations 81

Inspect Star 3.33.1: Listener commands 89

Inspect Variable 3.36: Interaction with the GUI and the IDE 98

Interface Builder tool ~ 3.36: Interaction with the GUI and the IDE 97
Interrupt Shell Subjob 3.34.2: Invoking and using a Shell tool 94
Inverse Add Global Word Abbrev 3.27: Abbreviations 79

Inverse Add ModeWord Abbrev 3.27: Abbreviations 79

InvokeMenu Item 3.36: Interaction with the GUI and the IDE 97
InvokeTool ~ 3.36: Interaction with the GUI andthe IDE 97

| Search Backward Regexp 3.23.2: Regular expression searching 71

| Search Forward Regexp ~ 3.23.2: Regular expression searching 71

i search-1 ax-whi t espace editorvariable 3.23.1: Searching 66
i sear ch-regexp-| ax-whi tespace editor variable 3.23.1: Searching 66

J

Jump toRegister 3.25: Registers 75
Jump to Saved Position 3.25: Registers 75
Just OneSpace 3.11.1: Deleting Text 46

K
key
Alt 25.1: Modifier keys- Command, Ctrl, Alt and Meta 11
command description 3.3.1: Thehelpcommand 18
Control 25.1: Modifier keys- Command, Ctrl, Alt and Meta 11
description 3.3.1: Thehelpcommand 18, 3.3.1: Thehelpcommand 19
Escape 2.5.1: Modifier keys- Command, Ctrl, Alt and Meta 11

212

25

Index

key binding 3.32: Keybindings 87
customising 5.2: Keybindings 135, 6: Advanced Features 138, 6.1: Customizing default key bindings 138
customizing 5.2: Keybindings 135, 6: Advanced Features 138, 6.1: Customizing default key bindings 138
keyboard macro
begin definition of ~ 3.28: Keyboard macros 82
editor definition 3.28: Keyboard macros 82
end definitionof ~ 3.28: Keyboard macros 82
execute 3.28: Keyboard macros 82
name 3.28: Keyboard macros 82
keyboard macro commands 3.28: Keyboard macros 82
Keyboard MacroQuery 3.28: Keyboard macros 82
key sequence
editor definition 2.5.1: Modifier keys- Command, Ctrl, Alt and Meta 11
forcommand 3.3.1: Thehelpcommand 19
key sequences
for commands 3.3.1: Thehelpcommand 20
Kill Backward Up List ~ 4.4.2: Killingforms 115
Kill Buffer ~ 3.20: Buffers 59
Kill Comment 4.6: Comments 118
killing
editor definition 3.11: Deleting and killing text 46
killingtext 3.11.2: Killingtext 47
killing text commands 2.6.5: Deletingand killingtext 14, 3.11: Deleting and killingtext 46
Kill Line 3.11.2: Killingtext 48
Kill Next Word 3.11.2: Killingtext 47
Kill Parse 3.29.4: Deleting and inserting text in the echo area 85
Kill PreviousWord 3.11.2: Killingtext 47
Kill Region 3.11.2: Killingtext 48
Kill Register ~ 3.25: Registers 75
killring 3.11: Deetingand killingtext 46, 3.11.2: Killingtext 47, 3.12: Insertingtext 49
rotate 3.12: Insertingtext 49
kill-ring-string function 6.39: Insertingtext 153
Kill Shell Subjob 3.34.2: Invoking and using a Shell tool 95
Kill SomeBuffers 3.20: Buffers 59

L
Last Keyboard Macro 3.28: Keyboard macros 82
line
beginning 3.8: Movement 38
centre 3.19.1: Fill commands 57
count for page 3.22: Pages 64
count for region 3.9.2: Regions 45
deleteblank 3.11.1: Deleting Text 47

213

Index

deletematching 3.23.1: Searching 68
delete non-matching 3.23.1: Searching 68
end 3.8: Movement 38
goto 3.8: Movement 39
indentation 4.3.5: Indentation and Completion 111
indentnew 3.18: Indentation 55
kil 3.11.2: Killingtext 48
kill backward ~ 3.11.2: Killingtext 48
length 3.19.1: Fill commands 56
list matching 3.23.1: Searching 68
moveto top of window 3.8: Movement 40
next 3.8: Movement 38
opennew 3.12: Insertingtext 49
previous 3.8: Movement 38
transposition 3.16: Transposition 53
what line 3.8: Movement 39
linecount 3.22: Pages 64
line-end function 6.3.12: Movement 154
Li nef eed AutoFill Linefeed 3.19.2: Auto-Fill mode 57
line-of fset function 6.3.12: Movement 154
line-start function 6.3.12: Movement 154
Lineto Top of Window 3.8: Movement 40
Lisp
editor commands 4 : Editing Lisp Programs 102
Lisp comment commands 4.6: Comments 117
Lisp documentation commands 4.8: Documentation 120
Lisp editor functions 6.3.11: Lisp 153
Lisp formcommands 4.4: Forms 114
LispInsert) 4.7: Parentheses 120
Lisp Insert) Indenting Top Level 4.7 : Parentheses 120
Lisplistcommands 4.5: Lists 116
Lispmode 3.26.1: Major modes 76, 3.26.1: Major modes 77
LispWorks IDE tools
Application Builder ~ 3.36: Interaction with the GUI and the IDE 97
ClassBrowser 4.3.6: Miscellaneous 113
Editor 4.3.4: Function callersand callees 111, 4.3.4: Functioncallersand callees 111

Function Call Browser 4.3.4: Function callersand callees 110, 4.3.4: Function callersand callees 110, 4.3.4: Function callersand
callees 110, 4.3.4: Functioncallersand callees 111

Generic Function Browser 4.3.6: Miscellaneous 113, 4.3.6: Miscellaneous 114
Interface Builder 3.36: Interaction with the GUI and the IDE 97

Listener 3.11.1: Deleting Text 47, 3.11.1: Deleting Text 47, 3.26.2: Minor modes 77, 3.34.2: Invoking and using a Shell
tool 94, 4.9.3: Evaluationin Listener commands 124

Output Browser ~ 3.11.1: Deleting Text 47

214

Index

ProcessBrowser ~ 3.1: Aborting commands and processes 16
Search Files 3.23.1: Searching 69, 3.23.1: Searching 69, 3.23.1: Searching 70
selecting 3.36: Interaction with the GUI and the IDE 97

Shell 3.34.2: Invoking and using a Shell tool 93, 3.34.2: Invoking and using a Shell tool 94, 3.34.2: Invoking and using a Shell
tool 94, 3.34.2: Invoking and usinga Shell tool 95, 3.34.2: Invoking and using a Shell tool 95

shortcuts 3.36: Interaction with the GUI and the IDE 97
Symbol Browser 4.8: Documentation 120
list
extract 4.4.2: Killingforms 115
kill backwardup 4.4.2: Killingforms 115
movedownonelevel 451: Movement 117
movetoend 45.1: Movement 116, 4.5.1: Movement 116
movetostat 4.5.1: Movement 116, 4.51: Movement 117
List Buffer Definitions 3.36: Interaction with the GUI and the IDE 98
List Buffers 3.20: Buffers 59
List Callees 4.3.4: Function callersand callees 110
List Callers 4.3.4: Function callersand callees 110
lisscommands 45: Lists 116
List Definitions 4.3.2: Definition searching 106
List DefinitionsFor Dspec 4.3.2: Definition searching 106
List Directory 3.5.6: Miscellaneousfile operations 30
listener
clear 3.11.1: Deleting Text 47
listener commands
Execute or Insert Newlineor Yank from PreviousPrompt Ret urn~ 3.33.1: Listener commands 89
History Firss Ctrl +C < 3.33.2: History commands 89
History Kill Current Ct r | +C Ctr| +K 3.33.2: History commands 90
History Last Ct r | +C > 3.33.2: History commands 90
History Next Al t +Nor Ctrl1 +C Ctrl +N 3.33.2: History commands 90
History PreviousAl t +PorCtr| +C Ctrl +P 3.33.2: History commands 90
History Search Al t +Ror Ctr|1 +C Ctrl +R 3.33.2: History commands 90
History Search From Input ~ 3.33.2: History commands 90
History Select Ct r 1 +C Ctrl +F 3.33.2: History commands 91
History Yank Ctr1 +C Ctrl +Y 3.33.2: History commands 91
Insert From PreviousPrompt Ct r 1 +J 3.33.1: Listener commands 89
Inspect Star Ctr | +C Ctrl +I 3.33.1: Listener commands 89
Throw ToTop Level Al t +K 3.33.1: Listener commands 89

Listenertool 3.11.1: Deleting Text 47, 3.11.1: Deleting Text 47, 3.26.2: Minor modes 77, 3.34.2: Invoking and using a Shell
tool 94, 4.9.3: Evaluationin Listener commands 124

List FacesDisplay 3.38: Obscure commands 100
List MatchingLines 3.23.1: Searching 68

215

Index

List Registers 3.25: Registers 75
List Unwritable Characters 3.5.3.2: Unwritable characters 26
List Word Abbrevs ~ 3.27: Abbreviations 80
Load File 4.9.2: Evaluation commands 123
Load Fileln Listener ~ 4.9.2: Evaluation commands 124
location
editor definition 2.2.4: Locations 10
locations 3.10: Locations 45
Lowercase Region 3.15: Caseconversion 52

LowercaseWord 3.15: Caseconversion 51

M
macro

keyboard 3.28: Keyboard macros 82
Macroexpand Form 4.4.3: Macro-expansion of forms 115
macro-expansion 4.4.3: Macro-expansion of forms 115
Macros

def command 6.3.2: Definingcommands 141

save-excursi on 6.34: Points 149

use- buffer 6.3.3.2: Buffer operations 145

wi th-buffer-locked 6.33.1: Bufferlocking 142, 6.3.3.1: Buffer locking 143

with-point 634: Points 149

wi t h-point-1ocked 6.331: Buffer locking 142, 6.3.3.1: Buffer locking 143
major mode

editor definition 2.3: Modes 10, 3.26.1: Major modes 76
meke- buf f er function 6.3.3.2: Buffer operations 145
Make Directory 3.5.6: Miscellaneousfile operations 30
nmake-face function 6.3.17: Faces 159
MakeWord Abbrev 3.27: Abbreviations 79
manual

on-lineeditor 3.3.1: Thehelpcommand 18, 3.3.1: Thehelpcommand 19, 3.3.1: Thehelpcommand 19
mark

editor definition 2.2.2: Marks 10

exchangewithpoint 3.9.1: Marks 44

form 4.4.1: Movement, marking and indentation 114

movecurrent pointto 3.9.1: Marks 43

paragraph 3.9.1: Marks 44

pop 39.1: Marks 43

Seealso locations

sentence 39.1: Marks 44

set 39.1: Marks 43

word 3.9.1: Marks 44

216

Index

Mark Defun 4.3.1: Movement, marking and specifying indentation 104
Mark Form 4.4.1: Movement, marking and indentation 114
Mark Page 3.22: Pages 64
Mark Paragraph 3.9.1: Marks 44
markring 3.9: Marksandregions 43
Mark Sentence 3.9.1: Marks 44
Mark WholeBuffer ~ 3.9.1: Marks 44
Mark Word 39.1: Marks 44
nmessage function 6.3.6: Theechoarea 150
method call
describe 4.3.6: Miscellaneous 114
Microsoft Windows keys
using 5: Emulation 135
minor mode
editor definition 2.3: Modes 10, 3.26.2: Minor modes 77
mode
editor definition 2.3: Modes 10, 3.26: Modes 76
indentationin ~ 3.18: Indentation 54
mode abbreviation
editor definition 3.27 : Abbreviations 78
mode line
editor definition 2.1.3: Themodeline 9
modes
abbrev 3.26.2: Minor modes 77, 3.27: Abbreviations 79
auto-fill ~ 3.19.2: Auto-Fill mode 57, 3.26.2: Minor modes 77
Directory 3.26.1: Major modes 76
execute 3.26.2: Minor modes 77
fundamental 3.26.1: Major modes 76
Lisp 3.26.1: Major modes 76
overwrite 3.17: Overwriting 53, 3.26.2: Minor modes 77
shell 3.26.1: Major modes 76
text 3.26.1: Major modes 76
mouse
editor bindings 3.35.2: Actionsinvolving the mouse 96
movement commands 2.6.4: Movement 13, 3.8: Movement 37
locations 3.10: Locations 45
movement functions 6.3.12: Movement 154, 6.3.16: Windows 158
MoveOver) 4.7: Parentheses 120
nmove- poi nt function 6.3.4: Points 148
Move ToWindow Line 3.8: Movement 40

217

Index

N

NameKeyboard Macro 3.28: Keyboard macros 82

Negative Argument 3.4: Using prefix arguments 21

New Buffer ~ 3.20: Buffers 60

New in LispWorks 7.0
Code Coverage Current Buffer editor command 4.10.1: Coloring code coverage 128
Code Coverage File editor command 4.10.1: Coloring code coverage 129
Code Coverage L oad Default Data editor command ~ 4.10.2: Setting the default code coverage data 129
Code Coverage Set Default Data editor command ~ 4.10.2 : Setting the default code coverage data 129
Directory Mode Copy Marked editor command 3.7.4: Modifying the file system from the Directory mode buffer 36
Directory Mode Delete editor command 3.7.4: Modifying the file system from the Directory mode buffer 35
Directory Mode Edit File editor command 3.7.2: Directory mode commands 33
Directory Mode Edit File In Other Window editor command ~ 3.7.2: Directory mode commands 33
Directory Mode Flag Delete editor command ~ 3.7.2: Directory mode commands 35
Directory Mode Flag Delete When Marked editor command ~ 3.7.2: Directory mode commands 35
Directory Mode Flag Edited editor command 3.7.2: Directory mode commands 34
Directory Mode Kill Line editor command 3.7.3: Explicit editing of the Directory mode buffer 35
Directory Mode Mark All editor command ~ 3.7.2: Directory mode commands 34
Directory Mode Mark editor command 3.7.2: Directory mode commands 33
Directory Mode Mark Matches editor command 3.7.2: Directory mode commands 34
Directory Mode Mark Regexp Matches editor command ~ 3.7.2: Directory mode commands 34
Directory Mode Mark When Edited editor command 3.7.2: Directory mode commands 34
Directory Mode Move Marked editor command 3.7.4: Modifying the file system from the Directory mode buffer 36
Directory Mode New Buffer With Edited editor command 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Flagged Delete editor command ~ 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Marked editor command 3.7.5: Creating new Directory mode buffers 36
Directory Mode New Buffer With Matches editor command 3.7.5: Creating new Directory mode buffers 37
Directory Mode New Buffer With Regexp Matches editor command 3.7.5: Creating new Directory mode buffers 37
Directory Mode Next Line editor command 3.7.2: Directory mode commands 32
Directory Mode Previous Line editor command 3.7.2: Directory mode commands 32
Directory Mode Rename editor command ~ 3.7.4: Modifying the file system from the Directory mode buffer 36
Directory Mode Toggle Edited editor command 3.7.2: Directory mode commands 34
Directory Mode Unflag Edited editor command 3.7.2: Directory mode commands 33
Directory Mode Unmark Backward editor command 3.7.2: Directory mode commands 33
Directory Mode Unmark editor command 3.7.2: Directory mode commands 33
Directory Mode Unmark Matches editor command 3.7.2: Directory mode commands 34
Directory Mode Unmark Regexp Matches editor command 3.7.2: Directory mode commands 34
Directory Mode Unmark When Edited editor command 3.7.2: Directory mode commands 34
Editor commands for code coveragedisplay 4.10: Code Coverage 128
editor searches .cpp filesby default 3.23.1: Searching 69, 3.23.3: Replacement 72
Find File With External Format editor command 3.5.3.1: Controlling the external format 25
Find Source For Current Package 4.3.2: Definition searching 106
Force Undo editor command 3.7.3: Explicit editing of the Directory mode buffer 35

218

Index

Improved support for Unicode and other fileencodings 3.5.3: Unicode and other file encodings 24

Invoke Menu Item editor command 3.36: Interaction with the GUI and the IDE 97

List Directory editor command 3.5.6: Miscellaneous file operations 30

Save Buffer Pathname 3.5.6: Miscellaneous file operations 30

Scroll Window Down Preserving Highlight editor command ~ 3.8: Movement 41

Scroll Window Up Preserving Highlight editor command 3.8: Movement 42

Search Bufferseditor command 3.23.1: Searching 69

special meaning of Backslash in regular expression replacement commands 3.23.3: Replacement 73

Un-Kill AsFilename 3.12: Insertingtext 49

Un-Kill AsString 3.12: Insertingtext 49
New in LispWorks 7.1

Connect Remote Debugging editor command 4.15: Remote debugging 132

Reconnect Remote Listener editor command 4.15: Remote debugging 133

Remote Evaluate Buffer editor command 4.15: Remote debugging 133

Remote Evaluate Defun editor command ~ 4.15: Remote debugging 133

Remote Evaluate Defun In Listener editor command 4.15: Remote debugging 133

Remote Evaluate Last Form editor command 4.15: Remote debugging 133

Remote Evaluate Last Form In Listener editor command 4.15: Remotedebugging 133

Remote Evaluate Region editor command 4.15: Remote debugging 133

Remote Evaluate Region I n Listener editor command 4.15: Remote debugging 133

Set Default Remote Debugging Connection editor command ~ 4.15: Remote debugging 134
New in LispWorks 8.0

Fold Buffer Definitions editor command 4.14: Definition folding 132

i sear ch- | ax-whi t espace editor variable 3.23.1: Searching 66

i search-regexp-| ax-whi t espace editor variable 3.23.1: Searching 66

repl ace- | ax- whi t espace editor variable 3.23.1: Searching 66

repl ace-regexp- | ax- whi t espace editor variable 3.23.1: Searching 66

Revert Buffer With External Format editor command 3.5.6 : Miscellaneousfile operations 29

sear ch-whi t espace- r egexp editor variable ~ 3.23.1: Searching 67

set - buf f er - name- di rect ory-del i m t er s editor function 6.3.8: Files 151

set - pat hnane- | oad- f unct i on editor function 6.3.8: Files 152
toggle between the main tab and the Output tab or aListener or Editor ~ 3.36: Interaction with the GUI and the IDE 97
Toggle Current Definition Folding editor command 4.14: Definition folding 132
Unfold Buffer Definitions editor command 4.14: Definition folding 132
New in LispWorks 8.1
Evaluate Nearest Form editor command ~ 4.9.2: Evaluation commands 123
Evaluate Nearest Form In Listener editor command 4.9.3: Evaluation in Listener commands 125
Evaluate Next Form editor command 4.9.2: Evaluation commands 123
Kill Some Bufferseditor command 3.20: Buffers 59
uncommenting using the Comment Region editor command 4.6 Comments 117

Uncomment Multi Line Comment editor command 4.6: Comments 118

219

Index

newline
addingtoend of file 35.2: Savingfiles 24

New Line 3.12: Insertingtext 49

Newly documentated in LispWorks 7.1
face systemclass 6.3.17: Faces 159
make- f ace editor function ~ 6.3.17: Faces 159

Newly documented in LispWorks 7.0
Activate I nterface editor command 3.36: Interaction with the GUI and the IDE 96
Beginning of Buffer Preserving Point editor command 3.8: Movement 41
Beginning of Line After Prompt editor command 3.33.1: Listener commands 88
Beginning of Window editor command 3.8: Movement 41
Buffers Query Replace editor command 3.23.3: Replacement 72
Buffers Search editor command 3.23.1: Searching 69
Bug Report editor command 3.36: Interaction with the GUI and the IDE 99
Build Interface editor command 3.36: Interaction with the GUI and the IDE 97
Bury Buffer editor command 3.20: Buffers 59
Clear Eval Record editor command 3.38: Obscure commands 100
Comment Region editor command 4.6: Comments 117
CompareFile And Buffer editor command 3.24: Comparison 74
Compileand Load Buffer File editor command 4.9.4: Compilation commands 127
Compileand Load File editor command 4.9.4: Compilation commands 127
Debugger Abort editor command 3.33.3: Debugger commands 91
Debugger Backtrace editor command 3.33.3: Debugger commands 91
Debugger Continue editor command 3.33.3: Debugger commands 91
Debugger Edit editor command ~ 3.33.3: Debugger commands 92
Debugger Next editor command 3.33.3: Debugger commands 92
Debugger Previouseditor command 3.33.3: Debugger commands 92
Debugger Print editor command 3.33.3: Debugger commands 92
Debugger Top editor command 3.33.3: Debugger commands 92
Define Command Synonym editor command 6.3.2: Defining commands 142
Delete Other Windows editor command ~ 3.21: Windows 62
Edit Buffer editor command 3.20: Buffers 59
Edit Compiler Warnings editor command 3.36: Interaction with the GUI and the IDE 98
End of Buffer Preserving Point editor command 3.8: Movement 41
End of Window editor command 3.8: Movement 41
Execute or Insert Newline or Yank from Previous Prompt listener command 3.33.1: Listener commands 89
Exit Lisp editor command 3.36: Interaction with the GUI and the IDE 99
Expand File Name With Space editor command 3.6 : Filename completion 31
Find Key Definition editor command 4.3.2: Definition searching 106
Find Matching Parse editor command ~ 3.29.2 : Repeating echo area commands 84
Find Non-Base-Char editor command 3.5.3.2: Unwritable characters 27

Flush Sectionseditor command 3.38: Obscure commands 101

220

Index

Font Lock Fontify Block editor command 4.2: Syntax coloring 103

Font Lock Fontify Buffer editor command 4.2: Syntax coloring 103

font -1 ock-nar k- bl ock-functi on editor variable 4.2: Syntax coloring 103
Font Lock Mode editor command 4.2: Syntax coloring 103

Global Font Lock Mode editor command ~ 4.2: Syntax coloring 103

Grep editor command 3.36: Interaction with the GUI and the IDE 98

History First listener command ~ 3.33.2: History commands 89

History Kill Current editor command 3.33.2: History commands 90

History Last listener command ~ 3.33.2: History commands 90

History Next listener command 3.33.2: History commands 90

History Previouslistener command 3.33.2: History commands 90

History Search From Input editor command 3.33.2: History commands 90
History Search listener command 3.33.2: History commands 90

History Select editor command 3.33.2: History commands 91

History Yank editor command 3.33.2: History commands 91

Insert From Previous Prompt listener command 3.33.1: Listener commands 89
Inspect Star listener command 3.33.1: Listener commands 89

Inspect Variable editor command 3.36: Interaction with the GUI and the IDE 98

| Sear ch Backwar d Regexp editor command 3.23.2: Regular expression searching 71
| Search Forward Regexp editor command ~ 3.23.2: Regular expression searching 71
Kill Shell Subjob editor command 3.34.2: Invoking and using a Shell tool 95

Lisp Insert) Indenting Top Level editor command 4.7 : Parentheses 120

List Buffer Definitions editor command 3.36: Interaction with the GUI and the IDE 98
List Faces Display editor command 3.38: Obscure commands 100

Next Grep editor command 3.36: Interaction with the GUI and the IDE 98

Next Search Match editor command 3.36: Interaction with the GUI and the IDE 98
Previous Focus Window editor command ~ 3.21: Windows 62

Redo editor command ~ 3.38: Obscure commands 100

regul ar - expressi on-search 6.35: Regular expression searching 149
Remote Shell editor command 3.34.2: Invoking and using a Shell tool 94

Reset Echo Area editor command 3.29.6: Leaving theechoarea 86

Scroll Window Down In Place editor command ~ 3.8: Movement 42

Scroll Window Down Moving Point editor command ~ 3.8: Movement 42

Scroll Window Down Preserving Point editor command 3.8: Movement 43

Scroll Window Up In Place editor command ~ 3.8: Movement 42

Scroll Window Up Moving Point editor command ~ 3.8: Movement 42

Scroll Window Up Preserving Point editor command ~ 3.8: Movement 42

Set Buffer Transient Edit editor command ~ 3.20: Buffers 60

Set Titleeditor command 3.36: Interaction with the GUI and the IDE 96

Shell Command On Region editor command 3.34.1: Running shell commands directly from the editor
Show Directory editor command 3.36: Interaction with the GUI and the IDE 99
Terminate Shell Subjob editor command 3.34.2: Invoking and using a Shell tool 95

221

93

Index

Throw out of Debugger editor command 3.33.3: Debugger commands 92
Throw To Top Level listener command 3.33.1: Listener commands 89
Toggle Global Simple Undo editor command 3.38: Obscure commands 100
Toggle Showing Cursor Info editor command 3.29.5: Display of informationintheecho area 86
Untrace All editor command 4.3.3: Tracing functions 109

Newly documented in LispWorks 8.1
Emacs Command editor command 5.2.3: Accessing Emacskeys 136

New Window 3.21: Wndows 61

Next Breakpoint ~ 4.11.2: Moving between breakpoints 130

Next Grep 3.36: Interaction with the GUI and theIDE 98

Next Line 3.8: Movement 38

Next Ordinary Window 3.21: Windows 61

Next Page 3.22: Pages 64

Next Parse 3.29.2: Repeating echo area commands 84

Next Scroll Window Down Moving Point 3.8: Movement 42

Next Search Match ~ 3.36: Interaction with the GUI and the IDE 98

Next Window 3.21: Windows 61

O
OpenlLine 3.12: Insertingtext 50
output
clear 3.11.1: Deleting Text 47
Output Browser tool ~ 3.11.1: Deleting Text 47
out put-format-default editorvariable 35.3.1: Controlling the external format 26
Overwrite Delete Previous Character 3.17: Overwriting 54
OverwriteMode 3.17: Overwriting 53, 3.26.2: Minor modes 77

overwriting commands 3.17: Overwriting 53

P
package

EDI TOR 6.3: Programming the editor 140
set 4.9.1: General Commands 122

page

display firstlines 3.22: Pages 64

editor definition 3.22: Pages 63

goto 3.22: Pages 64

insert first linesinto buffer ~ 3.22: Pages 64
mark 3.22: Pages 64

next 3.22: Pages 64

previous 3.22: Pages 63

pagecommands 3.22: Pages 63

pane

editor definition 2.1.1: Windows and panes 9

222

Index

paragraph
backward 3.8: Movement 39
editor definition 2.4.3: Paragraphs 11
fill 3.19.1: Fill commands 56
forward 3.8: Movement 39
mark 39.1: Marks 44
parentheses
inserting apair of 4.7 : Parentheses 119, 4.7: Parentheses 119
parentheses commands 4.7 : Parentheses 119
pending delete 3.13: Delete Selection 51
point
editor definition 2.2.1: Points 10
exchangewithmark 3.9.1: Marks 44
goto 3.8: Movement 41
movetowindow line 3.8: Movement 40
positionof 3.29.5: Display of informationintheecho area 86
savetoregister 3.25: Registers 75
whereis 3.29.5: Display of informationintheecho area 86
poi nt type 6.34: Points 146
poi nt/= function 6.3.4: Points 147
poi nt < function 6.3.4: Points 148
poi nt <= function 6.3.4: Points 148
poi nt = function 6.3.4: Points 147
poi nt > function 6.3.4: Points 148
poi nt >= function 6.3.4: Points 148
point behavior 6.3.4: Points 146
point functions 6.3.4: Points 146
poi nt - ki nd function 6.3.4: Points 147
pointring Seemark ring
points and text modification 6.3.4: Points 146
poi nts-to-string function 6.39: Insertingtext 153
Point to Register 3.25: Registers 75
Pop and GotoMark 3.9.1: Marks 43
Pop Mark 39.1: Marks 43
prefix
fill 3.19.1: Fill commands 56
prefix argument 2.5.3: Prefixarguments 12, 3.4: Using prefix arguments 21
default 3.4: Using prefix arguments 21
negative 3.4: Using prefix arguments 21
setting 3.4 Using prefix arguments 21

prefix-argunent -default editorvariadble 3.4: Using prefix arguments 21

223

Index

Prepend to Register 3.25: Registers 75
Previous Breakpoint 4.11.2: Moving between breakpoints 130
Previous FocusWindow 3.21: Windows 62
PreviousLine 3.8: Movement 38
PreviousPage 3.22: Pages 63
PreviousParse 3.29.2: Repeating echo area commands 84
PreviousWindow 3.21: Windows 61
print

file 3.5.6: Miscellaneousfile operations 29

region 3.9.2: Regions 45
Print File 3.5.6: Miscellaneousfile operations 29
Print Region 3.9.2: Regions 45
Pri or Scroll Window Up Moving Point ~ 3.8: Movement 42
process

bresking 3.1: Aborting commands and processes 16
Process Browser tool ~ 3.1: Aborting commands and processes 16
process-character function 6.3.1: Callingeditor functions 140
ProcessFileOptions 3.5.6: Miscellaneousfile operations 29
programming the editor ~ 6.3: Programming the editor 140

calling functions 6.3.1: Calling editor functions 140

examples 6.3.18: Examples 160, 7: Sdf-contained examples 163
pronpt-for-buffer function 6.3.13: Promptingtheuser 155
pronpt-for-file function 6.3.13: Promptingtheuser 155
pronpt-for-integer function 6.3.13: Promptingtheuser 155
prompt-for-string function 6.3.13: Promptingtheuser 155
pronpt-for-variable function 6.3.13: Promptingtheuser 155
prompt functions 6.3.13: Prompting theuser 155
pronpt -regexp-string editorvariable 3.34.2: Invoking and using a Shell tool 94
Put Register 3.25: Registers 75

Q

Query Replace 3.23.3: Replacement 71, 3.23.3: Replacement 71
directory 3.23.3: Replacement 72

regexp 3.23.3: Replacement 73

system 3.23.3: Replacement 72

tags 4.3.2: Definition searching 108

Query Replace Regexp 3.23.3: Replacement 73

Quoted Insert 3.12: Insertingtext 50

QuoteTab 3.18: Indentation 56

R
Read Word Abbrev File 3.27: Abbreviations 81

224

Index

Reconnect RemoteListener 4.15: Remotedebugging 133
recursive editing 3.31: Recursive editing 87
redi splay function 6.3.16: Windows 158
Redo 3.38: Obscure commands 100
Reevaluate Defvar ~ 4.9.2: Evaluation commands 122
Re-evaluate Defvar ~ 4.9.2: Evaluation commands 122
Refresh Screen 3.21: Windows 63
regexp

query replace 3.23.3: Replacement 73

replace 3.23.3: Replacement 73
Regexp Forward Search 3.23.2: Regular expression searching 71
Regexp Reverse Search 3.23.2: Regular expression searching 71
region

append 3.5.2: Savingfiles 24

capitalize 3.15: Caseconversion 52

compile 4.9.4: Compilation commands 126

delete 3.11.1: Deleting Text 47

determining 3.9.1: Marks 44

editor definition 2.2.3: Regions 10

evaluste 4.9.2: Evaluation commands 123, 4.9.3: Evaluationin Listener commands 125

fill 3.19.1: Fill commands 56

get fromregister 3.25: Registers 76

indent 3.18: Indentation 54

indentrigidly ~ 3.18: Indentation 55

kil 3.11.2: Killingtext 48

linecount 3.9.2: Regions 45

lowercase 3.15: Caseconversion 52

print 3.9.2: Regions 45

save 3.11.2: Killingtext 48

transposition 3.16: Transposition 53

uppercase 3.15: Caseconversion 52

wordcount 3.9.2: Regions 44

write 3.5.2: Savingfiles 23
regi on-query-size editorvarigble 3.9.2: Regions 45
register

appendto 3.25: Registers 75

editor definition 3.25: Registers 74

getregion 3.25: Registers 76

kill 3.25: Registers 75

liss 3.25: Registers 75

moveto saved position 3.25: Registers 75

prependto 3.25: Registers 75

225

Index

record position 3.25: Registers 75
savecurrent pointto 3.25: Registers 75
saveposition 3.25: Registers 75
register commands 3.25: Registers 74
Register toPoint 3.25: Registers 75
regular expression 3.23.2: Regular expression searching 70
count occurrencesof ~ 3.23.2: Regular expression searching 71
interactivereplacement 3.23.3: Replacement 73
interactivesearch 3.23.2: Regular expression searching 71
replacement 3.23.3: Replacement 73
searching 3.23.2: Regular expression searching 70, 3.23.2: Regular expression searching
special meaning of Backslash in replacement commands 3.23.3: Replacement 73
regular expression search 3.23.2: Regular expression searching 70
regul ar - expr essi on-search function 6.3.5: Regular expression searching 149
remote debugging 4.15: Remotedebugging 132
Remote Evaluate Buffer ~ 4.15: Remotedebugging 133
Remote Evaluate Defun 4.15: Remote debugging 133
Remote Evaluate Defun In Listener 4.15: Remotedebugging 133
Remote Evaluate Last Form 4.15: Remote debugging 133
Remote EvaluateLast Form In Listener 4.15: Remote debugging 133
Remote Evaluate Region 4.15: Remote debugging 133
Remote Evaluate Region In Listener 4.15: Remotedebugging 133
Remote Shell 3.34.2: Invoking and using a Shell tool 94
RenameBuffer ~ 3.20: Buffers 60
RenameFile 3.5.6: Miscellaneousfile operations 30
repestingacommand 2.5.3: Prefixarguments 12, 3.4: Using prefix arguments 21
replace
case sengitivity 3.23.3: Replacement 72
query 3.23.3: Replacement 71
regexp 3.23.3: Replacement 73
string 3.23.3: Replacement 71
repl ace-1 ax-whi t espace editor variable 3.23.1: Searching 66
Replace Regexp 3.23.3: Replacement 73
repl ace-regexp- | ax- whi t espace editor variable 3.23.1: Searching 66
Replace String 3.23.3: Replacement 71
replacing 3.23.3: Replacement 71
replacing commands 3.23: Searching and replacing 65
Report Bug 3.36: Interaction with the GUI and the IDE 99
Report Manual Bug 3.36: Interaction with the GUI and the IDE 99
Reset EchoArea 3.29.6: Leavingtheechoarea 86

Ret ur n AutoFill Return 3.19.2: Auto-Fill mode 58

226

71

Index

Ret urn Confirm Parse 3.29.1: Completing commands 83
Return Default 3.29.4: Deleting and inserting text in the echo area 85
Ret ur n Executeor Insert Newlineor Yank from PreviousPrompt ~ 3.33.1: Listener commands 89
Return NewlLine 3.12: Insertingtext 49
ReverseIncremental Search 3.23.1: Searching 67
ReverseSearch 3.23.1: Searching 68
Revert Buffer ~ 3.5.6: Miscellaneousfile operations 29
revert-buffer-confirm editorvariable 3.5.6: Miscellaneousfile operations 29
Revert Buffer With External Format 3.5.6: Miscellaneousfile operations 29
ring
history 3.29.2: Repeating echo area commands 84
kil 3.11: Deletingand killingtext 46, 3.11.2: Killingtext 47, 3.12: Insertingtext 49
mark 3.9: Marksandregions 43
undo 3.14: Undoing 51
window 3.21: Windows 61
Room 3.37: Miscellaneous 99
Rotate ActiveFinders 4.3.2: Definition searching 108
RotateKill Ring 3.12: Insertingtext 49
Run Command 3.34.1: Running shell commands directly fromthe editor 93

S

same-line-p function 6.34: Points 148
Save All Files 3.5.2: Savingfiles 23
Save All Filesand Exit 3.5.2: Savingfiles 24
save-all-files-confirm editorvarisble 352: Savingfiles 23
Save Buffer Pathname 3.5.6: Miscellaneous file operations 30
save- excursion macro 6.34: Points 149
SaveFile 35.2: Savingfiles 23
Save Position 3.25: Registers 75
SaveRegion 3.11.2: Killingtext 48
screen
refresh 3.21: Windows 63
scroll button
size 3.21: Windows 63
scroller
size 3.21: Windows 63
Scroll Next Window Down ~ 3.21: Windows 62
Scroll Next Window Up 3.21: Windows 62
scrol | -overl ap editor varigble 3.8: Movement 40
Scroll Window Down ~ 3.8: Movement 39

Scroll Window Down In Place 3.8: Movement 42

227

Index

Scroll Window Down Moving Point ~ 3.8: Movement 42
Scroll Window Down Preserving Highlight 3.8: Movement 41
Scroll Window Down Preserving Point 3.8: Movement 43
Scroll Window Up 3.8: Movement 40
Scroll Window Up In Place 3.8: Movement 42
Scroll Window Up Moving Point 3.8: Movement 42
Scroll Window Up Preserving Highlight ~ 3.8: Movement 42
Scroll Window Up Preserving Point ~ 3.8: Movement 42
search
dl buffers 3.23.1: Searching 68
backward 3.23.1: Searching 68
case sensitivity 3.23.1: Searching 70
directory 3.23.1: Searching 69
files 3.23.1: Searching 69, 3.23.1: Searching 69
forward 3.23.1: Searching 67
incremental backward ~ 3.23.1: Searching 67
incremental forward 3.23.1: Searching 65
match position 3.23.1: Searching 66
regexp backward ~ 3.23.2: Regular expression searching 71
regexp forward 3.23.2: Regular expression searching 71
regular expression 3.23.2: Regular expression searching 70
system 3.23.1: Searching 70, 3.23.1: Searching 70
Search All Buffers 3.23.1: Searching 68
Search Buffers 3.23.1: Searching 69
Search Files 3.23.1: Searching 69
search-files function 3.23.1: Searching 70
Search FilesMatching Patterns 3.23.1: Searching 69
Search Filestool ~ 3.23.1: Searching 69, 3.23.1: Searching 69, 3.23.1: Searching
searching 3.23.1: Searching 65
searching commands 3.23: Searching and replacing 65
Search System 3.23.1: Searching 70
sear ch-whi t espace-regexp editorvariable 3.23.1: Searching 67
Select Buffer ~ 3.20: Buffers 58
Select Buffer Other Window 3.20: Buffers 58
Select GoBack 3.10: Locations 45
selection
indent 3.18: Indentation 55
indenting 4.3.5: Indentation and Completion 111
Select PreviousBuffer ~ 3.20: Buffers 58
Self-contained examples
editor commands 7.1: Examplecommands 163

editor syntax coloring ~ 7.2: Syntax coloring example 163

228

70

Index

Self Insert 3.12: Insertingtext 50
Self Overwrite 3.17: Overwriting 53
sentence
backward 3.8: Movement 39
delimiter 2.4.2: Sentences 11
editor definition 2.4.2: Sentences 11
forward 3.8: Movement 39
kill backward 3.11.2: Killingtext 48
kill forward 3.11.2: Killingtext 48
mark 39.1: Marks 44
terminator 2.4.2: Sentences 11
set-buffer-nanme-directory-delimters function 6.38: Files 151
Set Buffer Output 4.9.1: General Commands 122
Set Buffer Package 4.9.1: General Commands 122
Set Buffer Transient Edit ~ 3.20: Buffers 60
Set Comment Column 4.6: Comments 117
set-current-mark function 6.3.4: Points 147
Set Default Remote Debugging Connection 4.15: Remotedebugging 134
Set External Format 3.5.3.1: Controlling the external format 25
Set Fill Column 3.19.1: Fill commands 56
Set Fill Prefix ~ 3.19.1: Fill commands 57
set-interrupt-keys function 6.1: Customizing default key bindings 139
Set Mark 39.1: Marks 43
set - pat hname- | oad-functi on function 6.3.8: Files 152
Set Prefix Argument 3.4: Using prefix arguments 21
Set Title 3.36: Interaction with the GUI and the IDE 96
set up-i ndent function 6.2: Customizing Lispindentation 139
Set Variable 3.30: Editor variables 87
shel | - cd-regexp editorvariable 3.34.2: Invoking and using a Shell tool 94
shell command 3.34.1: Running shell commands directly fromthe editor 93
fromeditor 3.34: Running shell commands 93
Shell Command On Region 3.34.1: Running shell commands directly fromthe editor 93
shell mode 3.26.1: Major modes 76
shel | - popd-regexp editor variable 3.34.2: Invoking and using a Shell tool 94
shel | - pushd-regexp editor variable 3.34.2: Invoking and using a Shell tool 94
Shell Send Eof 3.34.2: Invoking and using a Shell tool 95
*shel | -shel | * variable 3.34.2: Invoking and using a Shell tool 94

Shell tool 3.34.2: Invoking and using a Shell tool 93, 3.34.2: Invoking and using a Shell tool 94, 3.34.2: Invoking and using a Shell
tool 94, 3.34.2: Invoking and usinga Shell tool 95, 3.34.2: Invoking and using a Shell tool 95

Show Directory ~ 3.36: Interaction with the GUI and the IDE 99

Show Documentation 4.8: Documentation 121

229

Index

Show Documentation for Dspec 4.8: Documentation 121
Show PathsFrom 4.3.4: Function callersand callees 111
Show Paths To 4.3.4: Function callersand callees 110
Show Variable 3.30: Editor variables 87
Skip Whitespace 3.8: Movement 41
source finding

activefinderslist 4.3.2: Definition searching 108

def package 4.3.2: Déefinition searching 106

dspec 4.3.2: Definition searching 105

editor command 4.3.2: Definition searching 105, 4.3.2: Definition searching

editor definitions 6.4.2: Sourcelocation 161

name 4.3.2: Definition searching 105

package definition ~ 4.3.2: Definition searching 106

tags 4.3.2: Definition searching 107

tegsfiles 4.3.2: Definition searching 107, 4.3.2: Definition searching 108
sour ce-found-action variable 6.311: Lisp 154
sourcerecording 4.3.2: Definition searching 104
space

delete horizontal 3.11.1: Deleting Text 46

justone 3.11.1: Deleting Text 46
Space AutoFill Space 3.19.2: Auto-Fill mode 57
Space CompleteFiedd 3.29.1: Completing commands 83
spaces-for-tab editorvarible 3.18: Indentation 54
Split Window Horizontally 3.21: Windows 62
Split Window Vertically 3.21: Windows 62
start-line-p function 6.3.4: Points 148
Stepper Breakpoint 4.12: Sepper commands 130
Stepper Continue 4.12: Sepper commands 130
Stepper Macroexpand 4.12: Stepper commands 130
Stepper Next 4.12: Sepper commands 130
Stepper Restart 4.12: Stepper commands 130
Stepper Show Current Source 4.12: Sepper commands 130
Stepper Step 4.12: Sepper commands 130
Stepper Step Through Call 4.12: Sepper commands 130
Stepper Step ToCall 4.12: Sepper commands 130
Stepper Step ToCursor 4.12: Stepper commands 130
Stepper Step ToEnd 4.12: Sepper commands 130
Stepper Step ToValue 4.12: Stepper commands 130
Stepper Undo Macroexpand 4.12: Stepper commands 130
Stop Shell Subjob 3.34.2: Invoking and using a Shell tool 95
string

count occurrencesof ~ 3.23.2: Regular expression searching 71

230

106

Index

insert 6.3.9: Insertingtext 153

replace 3.23.3: Replacement 71

search 3.23.1: Searching 65
symbol

apropos 4.8: Documentation 120

browser 4.8: Documentation 120

completion 4.3.5: Indentation and Completion 111, 4.3.5: Indentation and Completion 111, 4.3.5: Indentation and
Completion 112, 4.3.5: Indentation and Completion 112

describe 4.8: Documentation 121
Symbol Browser tool 4.8: Documentation 120
Syntax coloring 4.2: Syntaxcoloring 102
system
compile 4.9.4: Compilation commands 127
compile changed definitions 4.9.4: Compilation commands 128
describe 4.3.6: Miscellaneous 114
evaluate changed definitions 4.9.2: Evaluation commands 124
query replace 3.23.3: Replacement 72
search 3.23.1: Searching 70, 3.23.1: Searching 70
System Classes
face 6.3.17: Faces 159
System Query Replace 3.23.3: Replacement 72
System Search 3.23.1: Searching 70

T
Tab

for command completion 2.5.2: Two waysto execute commands 12, 3.2: Executingcommands 17, 3.29.1: Completing commands 83
forindentation 3.18: Indentation 54, 4.3.5: Indentation and Completion 111
for symbol completion 4.3.5: Indentation and Completion 111
insert 3.18: Indentation 56
width 3.18: Indentation 54
Tab Completelnput 3.29.1: Completing commands 83
Tab Indent 3.18: Indentation 54
Tab Indent Selection or Complete Symbol ~ 4.3.5: Indentation and Completion 111
tag
continuesearch 4.3.2: Definition searching 107
create buffer 4.3.2: Definition searching 107
editor definition 4.3.2: Definition searching 104
find 4.3.2: Definition searching 107
query replace 4.3.2: Definition searching 108
search 4.3.2: Définition searching 107
visitfile 4.3.2: Definition searching 108
TagsQuery Replace 4.3.2: Definition searching 108

231

Index

TagsSearch 4.3.2: Definition searching 107
temporary files 3.5.5: Backing-up filesonsaving 28
Terminate Shell Subjob 3.34.2: Invoking and using a Shell tool 95
terminator

sentence 2.4.2: Sentences 11
text handling concepts 2.4 : Text handling concepts 11
text mode 3.26.1: Major modes 76, 3.26.1: Major modes 77
Throw out of Debugger 3.33.3: Debugger commands 92
Throw ToTop Level 3.33.1: Listener commands 89
Toggle Auto Save 3.5.4: Auto-saving files 27
Toggle Breakpoint 4.11.1: Setting and removing breakpoints 129
Toggle Buffer Read-Only ~ 3.20: Buffers 60
Toggle Count Newlines 3.21: Windows 63
Toggle Current Definition Folding ~ 4.14: Definition folding 132
ToggleError Catch 4.9.2: Evaluation commands 124
Toggle Global SimpleUndo 3.38: Obscure commands 100
Toggle Showing Cursor Info 3.29.5: Display of information intheecho area 86
Tools menu

Preferences 1.1: Using the editor within Lisp\Works 7
Top of Window 3.8: Movement 40
Trace Definition 4.3.3: Tracing functions 109
Trace Definition Inside Definition 4.3.3: Tracing functions 109
Trace Function 4.3.3: Tracing functions 108
Trace Function Inside Definition 4.3.3: Tracing functions 109
tracing functions 4.3.3: Tracing functions 108
Transpose Characters 3.16: Transposition 52
Transpose Forms 4.4.4: Miscellaneous 116
TransposeLines 3.16: Transposition 53
Transpose Regions 3.16: Transposition 53
TransposeWords 3.16: Transposition 53
transposition commands 3.16: Transposition 52
Types

buf fer 6.3.3: Buffers 142

poi nt 6.3.4: Points 146

U

Uncomment Multi LineComment 4.6: Comments 118

Undefine 4.13.1: Undefining one definition 131
buffer 4.13.2: Removing multiple definitions 131
command 4.13.1: Undefining one definition 131
definition 4.13.1: Undefining one definition 131
region 4.13.2: Removing multiple definitions 131

232

Index

Undefine Buffer 4.13.2: Removing multiple definitions 131
UndefineCommand 4.13.1: Undefining one definition 131
UndefineRegion 4.13.2: Removing multiple definitions 131
Undo 3.14: Undoing 51
undoing editor commands 2.6.6: Undoing 14, 3.14: Undoing 51
undoring 3.14: Undoing 51

size 3.14: Undoing 51
undo-ring-size editorvariable 3.14: Undoing 51
Unexpand Last Word 3.27: Abbreviations 80
Unfold Buffer Definitions 4.14: Definition folding 132
Un-Kill ~ 3.12: Insertingtext 49
Un-Kill AsFilename 3.12: Insertingtext 49
Un-Kill AsString 3.12: Insertingtext 49
Ungplit Window 3.21: Windows 63
UntraceAll 4.3.3: Tracing functions 109
Untrace Definition 4.3.3: Tracing functions 109
Untrace Function ~ 4.3.3: Tracing functions 109
Up Comment Line 4.6: Comments 118
Uppercase Region 3.15: Caseconversion 52
UppercaseWord 3.15: Caseconversion 52

use-buffer macro 6.3.3.2: Buffer operations 145

\
variable
changevalueof 3.30: Editor variables 87
description 3.3.1: Thehelpcommand 18, 3.3.1: Thehelpcommand 19
editor 3.30: Editor variables 86
listing with apropos 3.3.1: The helpcommand 18
show valueof ~ 3.30: Editor variables 87
variablefunctions 6.3.15: Editor variables 157
Variables
puffer-list 6.3.3.2: Buffer operations 144
find-likely-function-ignores 6311: Lisp 153
grep- command 3.36: Interaction with the GUI and the IDE 98
indenting 6.3.10: Indentation 153
indent-with-tabs 6.3.10: Indentation 153
*shel | -shel | * 3.34.2: Invoking and using a Shell tool 94
sour ce-found-action 6311: Lisp 154
vari abl e-val ue accessor 6.3.15: Editor variables 158
vari abl e-val ue-if-bound function 6.3.15: Editor variables 158
View Page Directory 3.22: Pages 64

233

Index

View Source Search 4.3.2: Definition searching 106
Visit File 3.5.1: Findingfiles 22

Visit Other TagsFile 4.3.2: Definition searching 108
Visit TagsFile 4.3.2: Definition searching 108

W
Walk Form 4.4.3: Macro-expansion of forms 116
Wfind File 35.1: Findingfiles 22
What Command 3.3.1: Thehelpcommand 18
What Cursor Position 3.29.5: Display of informationintheecho area 86
What Line 3.8: Movement 39
What Lossage 3.3.1: Thehelpcommand 19
Wherels 3.3.1: Thehelpcommand 19
WherelsPoint 3.29.5: Display of informationintheecho area 86
whitespace
skip 3.8: Movement 41
window
delete 3.21: Windows 61
deletenext 3.21: Windows 62
editor definition 2.1.1: Windowsand panes 9
modeline 3.21: Windows 63
movelinetotopof 3.8: Movement 40
moveto bottom 3.8: Movement 40
movetotop 3.8: Movement 40
new 3.21: Windows 61
next 3.21: Windows 61, 3.21: Windows 61
previous 3.21: Windows 61
scroll down 3.8: Movement 39
scroller 3.21: Windows 63
scroll nextdown 3.21: Windows 62
scroll nextup 3.21: Windows 62
scroll overlap 3.8: Movement 40
scrollup 3.8: Movement 40
split 3.21: Windows 62, 3.21: Windows 62, 3.21: Windows 63
wi ndow- buf fer function 6.3.3.2: Buffer operations 145
window commands 3.21: Windows 61
window functions 6.3.16 : Windows 158
window ring 3.21: Windows 61
windows
and the Editor ~ 3.35.1: Buffersand windows 95
copy 3.35.1: Buffersandwindows 95
paste 3.35.1: Buffersand windows 96

234

Index

Wi ndow-t ext - pane function 6.3.16: Wndows 159

with-buffer-1ocked macro 6.3.3.1: Buffer locking 142, 6.3.3.1:

Wi th-point macro 6.3.4: Points 149

wi t h- poi nt-1 ocked macro 6.3.3.1: Buffer locking 142, 6.3.3.1: Buffer locking 143

Wi t h-runni ng-operation function 6.3.1: Callingeditor functions
word

backward 3.8: Movement 38

capitalize 3.15: Caseconversion 52

count for region 3.9.2: Regions 44

dynamic completion ~ 3.12: Insertingtext 50

editor definition 2.4.1: Words 11

forward 3.8: Movement 38

killnext 311.2: Killingtext 47

kill previous 3.11.2: Killingtext 47

lowercase 3.15: Caseconversion 51

mark 39.1: Marks 44

transposition 3.16: Transposition 53

uppercase 3.15: Caseconversion 52
Word Abbrev Apropos 3.27: Abbreviations 80
Word Abbrev Prefix Point ~ 3.27: Abbreviations 80
wor d- of f set function 6.3.12: Movement 154
WriteFile 35.2: Saving files 23
WriteRegion 3.5.2: Savingfiles 23
Write Word Abbrev File 3.27: Abbreviations 81

X
xref 4.3.4: Function callersand callees 110

Y

yank 3.12: Insertingtext 49

yank asfilename 3.12: Insertingtext 49
yank asstring 3.12: Insertingtext 49

Z
Zap ToChar 3.11.2: Killingtext 49

Non-alaphanumerics

#files 35: Filehandling 21

? HelponParse 3.29.1: Completing commands 83

~files 35: Filehandling 21, 3.5.5: Backing-upfilesonsaving 28

235

Buffer locking 143

141

	Editor User Guide
	Copyrights and Trademarks
	Contents
	1 Introduction
	1.1 Using the editor within LispWorks
	1.2 About this manual
	1.3 Viewing example files

	2 General Concepts
	2.1 Window layout
	2.1.1 Windows and panes
	2.1.2 Files and buffers
	2.1.3 The mode line

	2.2 Buffer positions: points, marks and locations
	2.2.1 Points
	2.2.2 Marks
	2.2.3 Regions
	2.2.4 Locations

	2.3 Modes
	2.4 Text handling concepts
	2.4.1 Words
	2.4.2 Sentences
	2.4.3 Paragraphs

	2.5 Executing commands
	2.5.1 Modifier keys - Command, Ctrl, Alt and Meta
	2.5.2 Two ways to execute commands
	2.5.3 Prefix arguments

	2.6 Basic editing commands
	2.6.1 Aborting commands and processes
	2.6.2 File handling
	2.6.3 Inserting text
	2.6.4 Movement
	2.6.5 Deleting and killing text
	2.6.6 Undoing
	2.6.7 Killing and Yanking
	2.6.8 Help

	3 Command Reference
	3.1 Aborting commands and processes
	3.2 Executing commands
	3.3 Help
	3.3.1 The help command
	3.3.2 Other help commands on UNIX and macOS

	3.4 Using prefix arguments
	3.5 File handling
	3.5.1 Finding files
	3.5.2 Saving files
	3.5.3 Unicode and other file encodings
	3.5.3.1 Controlling the external format
	3.5.3.2 Unwritable characters

	3.5.4 Auto-saving files
	3.5.5 Backing-up files on saving
	3.5.6 Miscellaneous file operations

	3.6 Filename completion
	3.7 Directory mode
	3.7.1 Directory mode buffer display
	3.7.2 Directory mode commands
	3.7.3 Explicit editing of the Directory mode buffer
	3.7.4 Modifying the file system from the Directory mode buffer
	3.7.5 Creating new Directory mode buffers

	3.8 Movement
	3.9 Marks and regions
	3.9.1 Marks
	3.9.2 Regions

	3.10 Locations
	3.11 Deleting and killing text
	3.11.1 Deleting Text
	3.11.2 Killing text

	3.12 Inserting text
	3.13 Delete Selection
	3.14 Undoing
	3.15 Case conversion
	3.16 Transposition
	3.17 Overwriting
	3.18 Indentation
	3.19 Filling
	3.19.1 Fill commands
	3.19.2 Auto-Fill mode

	3.20 Buffers
	3.21 Windows
	3.22 Pages
	3.23 Searching and replacing
	3.23.1 Searching
	3.23.2 Regular expression searching
	3.23.3 Replacement

	3.24 Comparison
	3.25 Registers
	3.26 Modes
	3.26.1 Major modes
	3.26.2 Minor modes
	3.26.3 Default modes
	3.26.4 Defining modes

	3.27 Abbreviations
	3.28 Keyboard macros
	3.29 Echo area operations
	3.29.1 Completing commands
	3.29.2 Repeating echo area commands
	3.29.3 Movement in the echo area
	3.29.4 Deleting and inserting text in the echo area
	3.29.5 Display of information in the echo area
	3.29.6 Leaving the echo area

	3.30 Editor variables
	3.31 Recursive editing
	3.32 Key bindings
	3.33 Execute mode
	3.33.1 Listener commands
	3.33.2 History commands
	3.33.3 Debugger commands

	3.34 Running shell commands
	3.34.1 Running shell commands directly from the editor
	3.34.2 Invoking and using a Shell tool

	3.35 Buffers, windows and the mouse
	3.35.1 Buffers and windows
	3.35.2 Actions involving the mouse

	3.36 Interaction with the GUI and the IDE
	3.37 Miscellaneous
	3.38 Obscure commands

	4 Editing Lisp Programs
	4.1 Automatic entry into Lisp mode
	4.2 Syntax coloring
	4.3 Functions and definitions
	4.3.1 Movement, marking and specifying indentation
	4.3.2 Definition searching
	4.3.3 Tracing functions
	4.3.4 Function callers and callees
	4.3.5 Indentation and Completion
	4.3.6 Miscellaneous

	4.4 Forms
	4.4.1 Movement, marking and indentation
	4.4.2 Killing forms
	4.4.3 Macro-expansion of forms
	4.4.4 Miscellaneous

	4.5 Lists
	4.5.1 Movement

	4.6 Comments
	4.7 Parentheses
	4.8 Documentation
	4.9 Evaluation and compilation
	4.9.1 General Commands
	4.9.2 Evaluation commands
	4.9.3 Evaluation in Listener commands
	4.9.4 Compilation commands

	4.10 Code Coverage
	4.10.1 Coloring code coverage
	4.10.2 Setting the default code coverage data

	4.11 Breakpoints
	4.11.1 Setting and removing breakpoints
	4.11.2 Moving between breakpoints

	4.12 Stepper commands
	4.13 Removing definitions
	4.13.1 Undefining one definition
	4.13.2 Removing multiple definitions

	4.14 Definition folding
	4.15 Remote debugging

	5 Emulation
	5.1 Using platform-specific editor emulation
	5.2 Key bindings
	5.2.1 Finding the keys
	5.2.2 Modifying the Key Bindings
	5.2.3 Accessing Emacs keys
	5.2.4 The Alt modifier and editor bindings

	5.3 Replacing the current selection
	5.4 Emulation in Applications

	6 Advanced Features
	6.1 Customizing default key bindings
	6.2 Customizing Lisp indentation
	6.3 Programming the editor
	6.3.1 Calling editor functions
	6.3.2 Defining commands
	6.3.3 Buffers
	6.3.3.1 Buffer locking
	6.3.3.2 Buffer operations

	6.3.4 Points
	6.3.5 Regular expression searching
	6.3.6 The echo area
	6.3.7 Editor errors
	6.3.8 Files
	6.3.8.1 File encodings in the editor

	6.3.9 Inserting text
	6.3.10 Indentation
	6.3.11 Lisp
	6.3.12 Movement
	6.3.13 Prompting the user
	6.3.14 In-place completion
	6.3.15 Editor variables
	6.3.16 Windows
	6.3.17 Faces
	6.3.18 Examples
	6.3.18.1 Example 1
	6.3.18.2 Example 2
	6.3.18.3 Example 3

	6.4 Editor source code
	6.4.1 Contents
	6.4.2 Source location
	6.4.3 Guidelines for use of the editor source code

	7 Self-contained examples
	7.1 Example commands
	7.2 Syntax coloring example

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Non-alaphanumerics

